Understanding how extracellular matrix (ECM) stiffness and biochemical factors such as TGF-β affect cell behaviour is critical for elucidating mechanisms underlying several pathologic conditions such as tissue fibrosis and cancer metastasis. This study investigates the effects of varying collagen substrate concentration and consequently varying stiffness conditions along with TGF-β treatment on the morphology, nanomechanical properties, and gene expression of normal human lung fibroblasts (NHLF). Our results reveal that increased substrate stiffness leads to more elongated cell morphology, decreased cellular stiffness, and significant alterations in gene expression related to cytoskeletal organization and myofibroblast activation genes.
View Article and Find Full Text PDFWhen testing biological samples with atomic force microscopy (AFM) nanoindentation using pyramidal indenters, Sneddon's equation is commonly used for data processing, approximating the indenter as a perfect cone. While more accurate models treat the AFM tip as a blunted cone or pyramid, these are complex and lack a direct relationship between applied force and indentation depth, complicating data analysis. This paper proposes a new equation derived from simple mathematical processes and physics-based criteria.
View Article and Find Full Text PDFSarcomas, rare malignant tumors of mesenchymal origin, are often underdiagnosed and have face diagnostic ambiguities and limited treatment options. The main objective of this study was to define the nanomechanical and biophysical properties of sarcoma cells, particularly examining how the cytoskeleton's remodeling and related cellular processes such as cell migration and invasion in response to environmental stimuli due to collagen content. Utilizing one murine fibrosarcoma and one osteosarcoma cell line we employed atomic force microscopy, immunostaining, advanced image processing, in vitro cellular assays, and molecular techniques to investigate cells' cytoskeleton remodeling in response to varying collagen concentration.
View Article and Find Full Text PDFChanges in the structural properties of the skin due to collagen alterations are an important factor in diabetic skin complications. Using a combination of photonic methods as an optic diagnostic tool, we investigated the structural alteration in rat dermal collagen I in diabetes, and after short-term l-arginine treatment. The multiplex approach shows that in the early phase of diabetes, collagen fibers are partially damaged, resulting in the heterogeneity of fibers, e.
View Article and Find Full Text PDFMidkine (MDK) is a multifunctional secreted protein that can act as a cytokine or growth factor regulating multiple signaling pathways and being implicated in fundamental cellular processes, such as survival, proliferation, and migration. Although its expression in normal adult tissues is barely detectable, MDK serum levels are found to be elevated in several types of cancer, including hepatocellular carcinoma (HCC). In this review, we summarize the findings of recent studies on the role of MDK in HCC diagnosis and progression.
View Article and Find Full Text PDFAtomic force microscopy (AFM) is a powerful tool for characterizing biological materials at the nanoscale utilizing the AFM nanoindentation method. When testing biological materials, spherical indenters are typically employed to reduce the possibility of damaging the sample. The accuracy of determining Young's modulus depends, among other factors, on the calibration of the indenter, i.
View Article and Find Full Text PDFAs metastasis is responsible for most cancer-related deaths, understanding the cellular and molecular events that lead to cancer cell migration and invasion will certainly provide insights into novel anti-metastatic therapeutic targets. Fascin-1 is an actin-bundling protein fundamental to all physiological or pathological processes that require cell migration. It is responsible for cross-linking actin microfilaments during the formation of actin-rich cellular structures at the leading edge of migrating cells such as filopodia, lamellipodia and invadopodia.
View Article and Find Full Text PDFA recent U.S. Food and Drug Administration report presented the currently available scientific information related to biological response to metal implants.
View Article and Find Full Text PDFThe Troodos mountains in Cyprus are a hotspot of plant diversity and cultural heritage. However, the traditional uses of medicinal and aromatic plants (MAPs), a significant aspect of local culture, have not been thoroughly studied. The aim of this research was to document and analyze the traditional uses of MAPs in Troodos.
View Article and Find Full Text PDFCancer progression is closely related to changes in the structure and mechanical properties of the tumor microenvironment (TME). In many solid tumors, including pancreatic cancer, the interplay among the different components of the TME leads to a desmoplastic reaction mainly due to collagen overproduction. Desmoplasia is responsible for the stiffening of the tumor, poses a major barrier to effective drug delivery and has been associated with poor prognosis.
View Article and Find Full Text PDFAtomic Force Microscopy (AFM) is a powerful tool enabling the mechanical characterization of biological materials at the nanoscale. Since biological materials are highly heterogeneous, their mechanical characterization is still considered to be a challenging procedure. In this paper, a new approach that leads to a 3-dimensional (3D) nanomechanical characterization is presented based on the average Young's modulus and the AFM indentation method.
View Article and Find Full Text PDFMeasuring the mechanical properties (i.e., elasticity in terms of Young's modulus) of biological samples using Atomic Force Microscopy (AFM) indentation at the nanoscale has opened new horizons in studying and detecting various pathological conditions at early stages, including cancer and osteoarthritis.
View Article and Find Full Text PDFNano-immunotherapy improves breast cancer outcomes but not all patients respond and none are cured. To improve efficacy, research focuses on drugs that reprogram cancer-associated fibroblasts (CAFs) to improve therapeutic delivery and immunostimulation. These drugs, however, have a narrow therapeutic window and cause adverse effects.
View Article and Find Full Text PDFAtomic Force Microscopy nanoindentation method is a powerful technique that can be used for the nano-mechanical characterization of bio-samples. Significant scientific efforts have been performed during the last two decades to accurately determine the Young's modulus of collagen fibrils at the nanoscale, as it has been proven that mechanical alterations of collagen are related to various pathological conditions. Different contact mechanics models have been proposed for processing the force-indentation data based on assumptions regarding the shape of the indenter and collagen fibrils and on the elastic or elastic-plastic contact assumption.
View Article and Find Full Text PDFThe collagen superfamily includes more than fifty collagen and/or collagen-like proteins with fibril-forming collagen type I being the most abundant protein within the extracellular matrix. Collagen type I plays a crucial role in a variety of functions, it has been associated with many pathological conditions and it is widely used due to its unique properties. One unique nano-scale characteristic of natural occurring collagen type I fibers is the so-called D-band periodicity, which has been associated with collagen natural structure and properties, while it seems to play a crucial role in the interactions between cells and collagen and in various pathological conditions.
View Article and Find Full Text PDFWith the invention of the Atomic Force Microscope (AFM) in 1986 and the subsequent developments in liquid imaging and cellular imaging it became possible to study the topography of cellular specimens under nearly physiological conditions with nanometric resolution. The application of AFM to biological research was further expanded with the technological advances in imaging modes where topographical data can be combined with nanomechanical measurements, offering the possibility to retrieve the biophysical properties of tissues, cells, fibrous components and biomolecules. Meanwhile, the quest for breaking the Abbe diffraction limit restricting microscopic resolution led to the development of super-resolution fluorescence microscopy techniques that brought the resolution of the light microscope comparable to the resolution obtained by AFM.
View Article and Find Full Text PDFBackground/aim: As metastasis accounts for most breast cancer (BC)-related deaths, identifying key players becomes research priority. Growth differentiation factor-15 (GDF15), a member of the transforming growth factor-β superfamily, is affected by the actin cytoskeleton and has been associated with cancer. However, its exact role in BC cell invasiveness is vague.
View Article and Find Full Text PDFTumor normalization strategies aim to improve tumor blood vessel functionality (i.e., perfusion) by reducing the hyper-permeability of tumor vessels or restoring compressed vessels.
View Article and Find Full Text PDFAtomic force microscopy (AFM) is an easy-to-use, powerful, high-resolution microscope that allows the user to image any surface and under any aqueous condition. AFM has been used in the investigation of the structural and mechanical properties of a wide range of biological matters including biomolecules, biomaterials, cells, and tissues. It provides the capacity to acquire high-resolution images of biosamples at the nanoscale and allows at readily carrying out mechanical characterization.
View Article and Find Full Text PDFMost gliomas are invasive tumors formed from glial cells and associated with high mortality rates. In this study, we characterized four glioma cell lines of varying degree of aggressiveness (H4, SW1088, A172 and U87-MG) in terms of morphology, cytoskeleton organization and stiffness, and evaluated their invasive potential by performing invasion, colony forming and spheroid invasion assays. Cells were divided into two distinct groups: aggressive cell lines (A172 and U87-MG) with more elongated, softer and highly invasive cells and less aggressive cells (H4 and SW088).
View Article and Find Full Text PDFIn many solid tumours a desmoplastic reaction takes place, which results in tumour tissue stiffening due to the extensive production of extracellular matrix (ECM) proteins, such as collagen, by stromal cells, mainly fibroblasts (FBs) and cancer-associated fibroblasts (CAFs). In this study, we investigated the effect of collagen stiffness on pancreatic FBs and CAFs, particularly on specific cytoskeleton properties and gene expression involved in tumour invasion. We found that cells become stiffer when they are cultured on stiff substrates and express higher levels of alpha-smooth muscle actin (α-SMA).
View Article and Find Full Text PDFExtracellular matrix (ECM)-related adhesion proteins are important in metastasis. Ras suppressor-1 (RSU-1), a suppressor of -transformation, is localized to cell⁻ECM adhesions where it interacts with the Particularly Interesting New Cysteine-Histidine rich protein (PINCH-1), being connected to Integrin Linked Kinase (ILK) and alpha-parvin (PARVA), a direct actin-binding protein. was also found upregulated in metastatic breast cancer (BC) samples and was recently demonstrated to have metastasis-promoting properties.
View Article and Find Full Text PDF