We performed multiscale simulations of analyte sorption and diffusion in hierarchical porosity models of monolithic silica columns for reversed-phase liquid chromatography to investigate how the mean mesopore size of the chromatographic bed and the analyte-specific interaction with the chromatographic interface influence the analyte diffusivity at various length scales. The reproduced experimental conditions comprised the retention of six analyte compounds of low to moderate solute polarity on a silica-based, endcapped, C stationary phase with water‒acetonitrile and water-methanol mobile phases whose elution strength was varied via the volumetric solvent ratio. Detailed information about the analyte-specific interfacial dynamics received from molecular dynamics simulations was incorporated through appropriate linker schemes into Brownian dynamics diffusion simulations in three hierarchical porosity models received from physical reconstructions of silica monoliths with a mean macropore size of 1.
View Article and Find Full Text PDFMass transport through the mesopore space of a reversed-phase liquid chromatography (RPLC) column depends on the properties of the chromatographic interface, particularly on the extent of the organic-solvent ditch that favors the analyte surface diffusivity. Through molecular dynamics simulations in cylindrical RPLC mesopore models with pore diameters between 6 and 12 nm we systematically trace the evolution of organic-solvent ditch overlap due to spatial confinement in the mesopore space of RPLC columns for small-molecule separations. Each pore model of a silica-based, endcapped, C-stationary phase is equilibrated with two mobile phases of comparable elution strength, namely 70/30 (v/v) water/acetonitrile and 60/40 (v/v) water/methanol, to consider the influence of the mobile-phase composition on the onset of organic-solvent ditch overlap.
View Article and Find Full Text PDFReversed-phase liquid chromatography (RPLC) operates with water-organic solvent (W-OS) mobile phases where preferential solvation (PS) of solutes is likely. To investigate the relevance of the solute solvation shell in the mobile phase for RPLC retention, we combine data from molecular dynamics simulations of small, neutral solutes (six analytes and two dead time markers) in W-methanol (MeOH) and W-acetonitrile (ACN) mixtures with corresponding retention data obtained on an RPLC column over a wide range of W/OS ratios. Data derived from Kirkwood-Buff integrals show PS by the OS for analytes vs low or negative PS for dead time markers.
View Article and Find Full Text PDFFast transport of retained analytes in reversed-phase liquid chromatography occurs through surface diffusion in the organic-solvent (OS)-enriched interfacial "ditch" region between the hydrophobic stationary phase and the water (W)-OS mobile phase. Through molecular dynamics simulations that recover the OS excess adsorption isotherms of a typical C-stationary phase for methanol and acetonitrile, we explore the relation between OS properties, OS excess adsorption, and surface diffusion. The emerging molecular-level picture attributes the mobile-phase contribution to surface diffusion to the hydrogen-bond capability and the eluting power of the OS.
View Article and Find Full Text PDFAmong the most popular compounds to estimate the hold-up time in reversed-phase liquid chromatography (RPLC) are acetone and uracil, which are considered as too small and too polar, respectively, for retention by the hydrophobic stationary phase, although their observed elution behavior does not fully support this assumption. We investigate how acetone and uracil as solutes interact with the chromatographic interface through molecular dynamics simulations in an RPLC mesopore model of a silica-supported, endcapped, C phase equilibrated with a water (W)‒acetonitrile (ACN) mobile phase. The simulation results provide a molecular-level explanation for the observed elution behavior of acetone and uracil, but also question whether true dead time markers for RPLC exist.
View Article and Find Full Text PDF