We provide a 3D ultrastructural analysis of the membrane systems involved in tip growth of rhizoids of the green alga Chara. Electron tomography of cells preserved by high-pressure freeze fixation has enabled us to distinguish six different types of vesicles in the apical cytoplasm where the tip growth machinery is accommodated. The vesicle types are: dark and light secretory vesicles, plasma membrane-associated clathrin-coated vesicles (PM-CCVs), Spitzenkoerper-associated clathrin-coated vesicles (Sp-CCVs) and coated vesicles (Sp-CVs), and microvesicles.
View Article and Find Full Text PDFWhile there is ample evidence for a role of auxin in root gravitropism, the seeming rapidity of gravi-induced changes in electrical parameters has so far been an argument against auxin being a primary signal in gravitropic signal transmission. To address this problem, we re-investigated the effect of gravistimulation on membrane voltages of Lepidium sativum L. and Vigna mungo L.
View Article and Find Full Text PDFThe positioning and gravity-induced sedimentation of statoliths is crucial for gravisensing in most higher and lower plants. In positively gravitropic rhizoids and, for the first time, in negatively gravitropic protonemata of characean green algae, statolith positioning by actomyosin forces was investigated in microgravity (<10(-4) g) during parabolic flights of rockets (TEXUS/MAXUS) and during the Space-Shuttle flight STS 65. In both cell types, the natural position of statoliths is the result of actomyosin forces which compensate the statoliths' weight in this position.
View Article and Find Full Text PDFEvoking of action potentials (APs) in the trap of Dionaea muscipula Ellis at intervals shorter than 20 s caused a gradual decrease in the amplitude of the APs. At longer intervals the amplitude was constant. The calcium ionophore A23187 (1 μM) caused a considerable decrease of AP amplitude.
View Article and Find Full Text PDF