CRISPR-Cas9 is a ribonucleoprotein complex that sequence-specifically binds and cleaves double-stranded DNA. Wildtype Cas9 and its nickase and cleavage-incompetent mutants have been used in various biological techniques due to their versatility and programmable specificity. Cas9 has been shown to bind very stably to DNA even after cleavage of the individual DNA strands, inhibiting further turnovers and considerably slowing down in-vivo repair processes.
View Article and Find Full Text PDFEstablishing low-error and fast detection methods for qubit readout is crucial for efficient quantum error correction. Here, we test neural networks to classify a collection of single-shot spin detection events, which are the readout signal of our qubit measurements. This readout signal contains a stochastic peak, for which a Bayesian inference filter including Gaussian noise is theoretically optimal.
View Article and Find Full Text PDFThe widespread and versatile prokaryotic CRISPR-Cas systems (clustered regularly interspaced short palindromic repeats and associated Cas proteins) constitute powerful weapons against foreign nucleic acids. Recently, the single-effector nuclease Cas12a that belongs to the type V CRISPR-Cas system was added to the Cas enzymes repertoire employed for gene editing purposes. Cas12a is a bilobal enzyme composed of the REC and Nuc lobe connected by the wedge, REC1 domain and bridge helix (BH).
View Article and Find Full Text PDF