Publications by authors named "Andreas Schlundt"

The SARS-CoV-2 nucleocapsid protein is indispensable for viral RNA genome processing. Although the N-terminal domain (NTD) is suggested to mediate specific RNA-interactions, high-resolution structures with viral RNA are still lacking. Available hybrid structures of the NTD with ssRNA and dsRNA provide valuable insights; however, the precise mechanism of complex formation remains elusive.

View Article and Find Full Text PDF

Polyproline sequences are deleterious to cells because they stall ribosomes. In bacteria, EF-P plays an important role in overcoming such polyproline sequence-induced ribosome stalling. Additionally, numerous bacteria possess an EF-P paralog called EfpL (also known as YeiP) of unknown function.

View Article and Find Full Text PDF

Throughout the family of coronaviruses, structured RNA elements within the 5' region of the genome are highly conserved. The fifth stem-loop element from SARS-CoV-2 (5_SL5) represents an example of an RNA structural element, repeatedly occurring in coronaviruses. It contains a conserved, repetitive fold within its substructures SL5a and SL5b.

View Article and Find Full Text PDF

Regulatory RNA elements fulfill functions such as translational regulation, control of transcript levels, and regulation of viral genome replication. Trans-acting factors (i.e.

View Article and Find Full Text PDF

The cellular levels of mRNAs are controlled post-transcriptionally by cis-regulatory elements located in the 3'-untranslated region. These linear or structured elements are recognized by RNA-binding proteins (RBPs) to modulate mRNA stability. The Roquin-1 and -2 proteins specifically recognize RNA stem-loop motifs, the trinucleotide loop-containing constitutive decay elements (CDEs) and the hexanucleotide loop-containing alternative decay elements (ADEs), with their unique ROQ domain to initiate mRNA degradation.

View Article and Find Full Text PDF

Zinc finger (ZnF) domains appear in a pool of structural contexts and despite their small size achieve varying target specificities, covering single-stranded and double-stranded DNA and RNA as well as proteins. Combined with other RNA-binding domains, ZnFs enhance affinity and specificity of RNA-binding proteins (RBPs). The ZnF-containing immunoregulatory RBP Roquin initiates mRNA decay, thereby controlling the adaptive immune system.

View Article and Find Full Text PDF

AT-rich interacting domain (ARID)-containing proteins, Arids, are a heterogeneous DNA-binding protein family involved in transcription regulation and chromatin processing. For the member Arid5a, no exact DNA-binding preference has been experimentally defined so far. Additionally, the protein binds to mRNA motifs for transcript stabilization, supposedly through the DNA-binding ARID domain.

View Article and Find Full Text PDF

RNAs exhibit a plethora of functions far beyond transmitting genetic information. Often, RNA functions are entailed in their structure, be it as a regulatory switch, protein binding site, or providing catalytic activity. Structural information is a prerequisite for a full understanding of RNA-regulatory mechanisms.

View Article and Find Full Text PDF

The nucleocapsid protein (N) of SARS-CoV-2 plays a pivotal role during the viral life cycle. It is involved in RNA transcription and accounts for packaging of the large genome into virus particles. N manages the enigmatic balance of bulk RNA-coating versus precise RNA-binding to designated cis-regulatory elements.

View Article and Find Full Text PDF

The family of AT-rich interactive domain (ARID) containing proteins -Arids- contains 15 members that have almost exclusively been described as DNA-binding proteins. Interestingly, a decade ago the family member Arid5a was found to bind and stabilize mRNAs of immune system key players and thereby account for driving inflammatory and autoimmune diseases. How exactly binding to DNA and RNA is coordinated by the Arid5a ARID domain remains unknown, mainly due to the lack of atom-resolved information on nucleic acid-binding.

View Article and Find Full Text PDF

The family of scaffold attachment factor B (SAFB) proteins comprises three members and was first identified as binders of the nuclear matrix/scaffold. Over the past two decades, SAFBs were shown to act in DNA repair, mRNA/(l)ncRNA processing and as part of protein complexes with chromatin-modifying enzymes. SAFB proteins are approximately 100 kDa-sized dual nucleic acid-binding proteins with dedicated domains in an otherwise largely unstructured context, but whether and how they discriminate DNA and RNA binding has remained enigmatic.

View Article and Find Full Text PDF

The outbreak of COVID-19 in December 2019 required the formation of international consortia for a coordinated scientific effort to understand and combat the virus. In this Viewpoint Article, we discuss how the NMR community has gathered to investigate the genome and proteome of SARS-CoV-2 and tested them for binding to low-molecular-weight binders. External factors including extended lockdowns due to the global pandemic character of the viral infection triggered the transition from locally focused collaborative research conducted within individual research groups to digital exchange formats for immediate discussion of unpublished results and data analysis, sample sharing, and coordinated research between more than 50 groups from 18 countries simultaneously.

View Article and Find Full Text PDF

SARS-CoV-2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti-virals. Within the international Covid19-NMR consortium, we have identified binders targeting the RNA genome of SCoV2.

View Article and Find Full Text PDF

The SARS-CoV-2 nucleocapsid (N) protein is crucial for the highly organized packaging and transcription of the genomic RNA. Studying atomic details of the role of its intrinsically disordered regions (IDRs) in RNA recognition is challenging due to the absence of structure and to the repetitive nature of their primary sequence. IDRs are known to act in concert with the folded domains of N and here we use NMR spectroscopy to identify the priming events of N interacting with a regulatory SARS-CoV-2 RNA element.

View Article and Find Full Text PDF

Control of posttranscriptional mRNA decay is a crucial determinant of cell homeostasis and differentiation. mRNA lifetime is governed by cis-regulatory elements in their 3' untranslated regions (UTR). Despite ongoing progress in the identification of cis elements we have little knowledge about the functional and structural integration of multiple elements in 3'UTR regulatory hubs and their recognition by mRNA-binding proteins (RBPs).

View Article and Find Full Text PDF
Article Synopsis
  • COVID-19 is caused by the SARS-CoV-2 virus, which has a unique RNA genome that is crucial for its replication and translation.
  • The 5'-untranslated region of the virus contains highly conserved structures like branched stem-loop 5 (SL5), which may serve as potential targets for antiviral drug development.
  • This study focuses on the structural analysis of specific regions of the SL5, providing insights that could lead to new therapeutic approaches against COVID-19.
View Article and Find Full Text PDF

The DNA-binding AT-rich interactive domain (ARID) exists in a wide range of proteins throughout eukaryotic kingdoms. ARID domain-containing proteins are involved in manifold biological processes, such as transcriptional regulation, cell cycle control and chromatin remodeling. Their individual domain composition allows for a sub-classification within higher mammals.

View Article and Find Full Text PDF

Riboswitches are regulatory RNA elements that undergo functionally important allosteric conformational switching upon binding of specific ligands. The here investigated guanidine-II riboswitch binds the small cation, guanidinium, and forms a kissing loop-loop interaction between its P1 and P2 hairpins. We investigated the structural changes to support previous studies regarding the binding mechanism.

View Article and Find Full Text PDF

The stem-loop (SL1) is the 5'-terminal structural element within the single-stranded SARS-CoV-2 RNA genome. It is formed by nucleotides 7-33 and consists of two short helical segments interrupted by an asymmetric internal loop. This architecture is conserved among Betacoronaviruses.

View Article and Find Full Text PDF

SARS-CoV-2 contains a positive single-stranded RNA genome of approximately 30 000 nucleotides. Within this genome, 15 RNA elements were identified as conserved between SARS-CoV and SARS-CoV-2. By nuclear magnetic resonance (NMR) spectroscopy, we previously determined that these elements fold independently, in line with data from in vivo and ex-vivo structural probing experiments.

View Article and Find Full Text PDF

The highly infectious disease COVID-19 caused by the SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail.

View Article and Find Full Text PDF

Insulin-like growth factor 2 mRNA-binding proteins (IMPs, IGF2BPs) act in mRNA transport and translational control but are oncofetal tumor marker proteins. The IMP protein family represents a number of bona fide multi-domain RNA-binding proteins with up to six RNA-binding domains, resulting in a high complexity of possible modes of interactions with target mRNAs. Their exact mechanism in stability control of oncogenic mRNAs is only partially understood.

View Article and Find Full Text PDF

The SARS-CoV-2 virus is the cause of the respiratory disease COVID-19. As of today, therapeutic interventions in severe COVID-19 cases are still not available as no effective therapeutics have been developed so far. Despite the ongoing development of a number of effective vaccines, therapeutics to fight the disease once it has been contracted will still be required.

View Article and Find Full Text PDF