Publications by authors named "Andreas Schaeffer"

Environmental pollution is escalating due to rapid global development that often prioritizes human needs over planetary health. Despite global efforts to mitigate legacy pollutants, the continuous introduction of new substances remains a major threat to both people and the planet. In response, global initiatives are focusing on risk assessment and regulation of emerging contaminants, as demonstrated by the ongoing efforts to establish the UN's Intergovernmental Science-Policy Panel on Chemicals, Waste, and Pollution Prevention.

View Article and Find Full Text PDF

Reckless release of contaminants into the environment causes pollution in various aquatic systems on a global scale. Biochar is potentially an inexpensive and environmentally friendly adsorbent for removing contaminants from water. Ball milling has been used to enhance biochar's functionality; however, global analysis of the effect of ball milling on biochar's capacity to adsorb contaminants in aqueous solutions has not yet been done.

View Article and Find Full Text PDF

Climate change, biodiversity loss, and chemical pollution are planetary-scale emergencies requiring urgent mitigation actions. As these "triple crises" are deeply interlinked, they need to be tackled in an integrative manner. However, while climate change and biodiversity are often studied together, chemical pollution as a global change factor contributing to worldwide biodiversity loss has received much less attention in biodiversity research so far.

View Article and Find Full Text PDF

The accumulation of organic pollutants in vegetables is a major global food safety issue. The concentrations of pollutants in vegetables usually differ across different tissues because of different transport and accumulation pathways. However, owing to the limitations of conventional methods, in situ localization of typical organic pollutants such as phthalate esters (PAEs) in plant tissues has not yet been studied.

View Article and Find Full Text PDF

The contamination of soil with organic pollutants has been accelerated by agricultural and industrial development and poses a major threat to global ecosystems and human health. Various chemical and physical techniques have been developed to remediate soils contaminated with organic pollutants, but challenges related to cost, efficacy, and toxic byproducts often limit their sustainability. Fortunately, phytoremediation, achieved through the use of plants and associated microbiomes, has shown great promise for tackling environmental pollution; this technology has been tested both in the laboratory and in the field.

View Article and Find Full Text PDF

Ferrate (Fe(VI)) salts like KFeO are efficient green oxidants to remediate organic contaminants in water treatment. Minerals are efficient sorbents of contaminants and also excellent solid heterogeneous catalysts which might affect Fe(VI) remediation processes. By targeting the typical polycyclic aromatic hydrocarbon compound - pyrene, the application of Fe(VI) for oxidation of pyrene immobilized on three minerals, i.

View Article and Find Full Text PDF

Soil microorganisms are indispensable for a healthy soil environment, where the fate of pesticides is contingent on microbial activity. Conversely, soil ecosystems can be distorted by all kinds of variables, such as agrochemicals. These crop protection products have been universally in use for decades in agriculture.

View Article and Find Full Text PDF

Significant progress has been made in the scientific understanding of factors that influence the outcome of biodegradation tests used to assess the persistence (P) of chemicals. This needs to be evaluated to assess whether recently acquired knowledge could enhance existing regulations and environmental risk assessments. Biodegradation tests have limitations, which are accentuated for "difficult-to-test" substances, and failure to recognize these can potentially lead to inappropriate conclusions regarding a chemical's environmental persistence.

View Article and Find Full Text PDF

The influence of an ionic functional group on the fate and behavior of chemicals in the environment has so far not been systematically investigated. This study, therefore, examines the following three substances with high structural similarity but differing charge: non-charged 4-n-dodecylphenol[phenylring-C(U)] (C-DP), negatively charged 4-n-dodecylbenzenesulfonicacid[phenylring-C(U)] sodium salt (C-DS) and positively charged 4-n-dodecylbenzyltrimethylammonium chloride[phenylring-C(U)] (C-DA). They were investigated in a soil simulation study according to the OECD 307 test guideline by measuring the distribution of the applied radioactivity (AR) among volatile, mineralized, extractable and non-extractable residues (NER) in one soil after 0, 1, 7, 14, 49, 84 and 124 days of incubation.

View Article and Find Full Text PDF

Fish are warned about the presence of predators via an alarm cue released from the skin of injured conspecifics. The detection of this odor inherently initiates an antipredator response, which increases the chance of survival for the individual. In the present study, we assessed the effect of three commonly used pesticides on the antipredator response of zebrafish (Danio rerio).

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how ionic functional groups affect the formation of non-extractable residues (NER) in soil by testing three structurally similar chemicals: C-DP, C-DS, and C-DA.
  • After 84 days, higher NER formation was observed in non-sterile soil compared to sterile soil, with C-DP, C-DS, and C-DA showing varying levels of NER conversion.
  • The NER were classified into three types based on their binding to soil, revealing that C-DP and C-DS primarily form covalently or biogenically bound residues, while C-DA predominantly forms sequestered residues, highlighting the need for considering these interactions in environmental persistence assessments.
View Article and Find Full Text PDF

Global demand for alternative energy sources increases due to concerns regarding energy security and greenhouse gas emissions. However, little is known regarding the impacts of biofuels to the environment and human health even though the identification of such impacts is important to avoid biofuels leading to undesired effects. In this study mutagenicity and genotoxicity of the three biofuel candidates ethyl levulinate (EL), 2-methyltetrahydrofuran (2-MTHF) and 2-methylfuran (2-MF) were investigated in comparison to two petroleum-derived fuels and a biodiesel.

View Article and Find Full Text PDF

Soils are faced with man-made chemical stress factors, such as the input of organic or metal-containing pesticides, in combination with non-chemical stressors like soil compaction and natural disturbance like drought. Although multiple stress factors are typically co-occurring in soil ecosystems, research in soil sciences on this aspect is limited and focuses mostly on single structural or functional endpoints. A mechanistic understanding of the reaction of soils to multiple stressors is currently lacking.

View Article and Find Full Text PDF

The demand for biofuels increases due to concerns regarding greenhouse gas emissions and depletion of fossil oil reserves. Many substances identified as potential biofuels are solvents or already used as flavors or fragrances. Although humans and the environment may be readily exposed little is known regarding their (eco)toxicological effects.

View Article and Find Full Text PDF

Quantification of nonextractable residues (NER) of pesticides in soil is feasible by use of radioactively labeled compounds, but structural information on these long-term stabilized residues is usually lacking. Microorganisms incorporate parts of the radiolabeled ((14)C-) carbon from contaminants into microbial biomass, which after cell death enters soil organic matter, thus forming biogenic nonextractable residues (bioNER). The formation of bioNER is not yet determinable in environmental fate studies due to a lack of methodology.

View Article and Find Full Text PDF

Bioconcentration and transformation of the potent and persistent xeno-estrogen 17α-ethinylestradiol (EE2) by organisms at the basis of the food web have received only little research attention. In this study, uptake, elimination, and biotransformation of radiolabeled EE2 ((14)C-EE2) by the freshwater green alga Desmodesmus subspicatus were investigated. The alga highly incorporated radioactivity following (14)C-EE2 exposure.

View Article and Find Full Text PDF

The fate assessment of nanomaterials in municipal sewage treatment plants (STP) is a crucial step for their environmental risk assessment and may be assessed by monitoring full scale STP, dosage to medium scale pilot STP or by laboratory testing. For regulatory purposes preferably standardised test protocols such as the OECD guidelines for testing of chemicals should be used. However, these test protocols have not yet been specifically designed for nanoparticles.

View Article and Find Full Text PDF

The nature of the abiotic birnessite (δ-MnO(2))-catalyzed transformation products of phenolic compounds in the presence of soil organic matter is crucial for understanding the fate and stability of ubiquitous phenolic carbon in the environment. (14)C-radioactive and (13)C-stable-isotope tracers were used to study the mineralization and transformation by δ-MnO(2) of two typical humus and lignin phenolic monomers--catechol and p-coumaric acid--in the presence and absence of agricultural and forest soil humic acids (HAs) at pH 5-8. Mineralization decreased with increasing solution pH, and catechol was markedly more mineralized than p-coumaric acid.

View Article and Find Full Text PDF

The sorption of organic contaminants in soil is mainly attributed to the soil organic matter (SOM) content. However, recent studies have highlighted the fact that it is not the total carbon content of the organic matter, but its chemical structure which have a profound effect on the sorption of organic contaminants. In the present study sorption of two nitroaromatic contaminants viz.

View Article and Find Full Text PDF

Background: Modern societies depend on environmental sustainability and on new generations of individuals well-trained by environmental research and teaching institutions. In the past, significant contributions to the identification, assessment, and management of chemical stressors with legal consequences have been made.

Main Features: Within this article, we intend to elucidate the merits and the emerging challenges of chemicals-related environmental sciences.

View Article and Find Full Text PDF

The long-term behavior of the herbicide atrazine and its metabolites in the environment is of continued interest in terms of risk assessment and soil quality monitoring. Aqueous desorption, detection, and quantification of atrazine and its metabolites from an agriculturally used soil were performed 22 years after the last atrazine application. A lysimeter soil containing long-term aged atrazine for >20 years was subdivided into 10 and 5 cm layers (at the lysimeter bottom: soil 0-50 and 50-55 cm; fine gravel 55-60 cm depth, implemented for drainage purposes) to identify the qualitative and quantitative differences of aged (14)C-labeled atrazine residues depending on the soil profile and chemico-physical conditions of the individual soil layers.

View Article and Find Full Text PDF

After 22 years of aging under natural conditions in an outdoor lysimeter the bioaccessibility of 14C-labeled atrazine soil residues to bacteria was tested. Entire soil samples as well as sand-sized, silt-sized, and clay-sized aggregates (>20, 20-2, and <2microm aggregate size, respectively) were investigated under slurried conditions. The mineralization of residual radioactivity in the outdoor lysimeter soil reached up to 4.

View Article and Find Full Text PDF

Clay minerals in soils control the sorption and mobility of nitroaromatics in munitions contaminated soils. Therefore, effect of exchangeable cations (NH4+ , K+, Ca2+, and Al3+) on sorption-desorption of trinitrotoluene (TNT) was studied in two reference soils viz sandy loam and silty clay. Compared to control soils, K+ ion saturation significantly increased TNT sorption in both the soils, while other cations decreased TNT sorption.

View Article and Find Full Text PDF

Phytoextraction has revealed great potential, however it is limited by the fact that plants need time and nutrient supply and have a limited metal uptake capacity. Although the use of synthetic chelators, such as EDTA, enhances heavy metal extraction, it also produces the negative side effects of high phytotoxicity, as well as leaching of essential metals. The aim of this research was to investigate the application of wool, in mobilising metals and in improving the phytoextraction of metals-contaminated soil.

View Article and Find Full Text PDF

There has been increasing interest in enhancing natural attenuation of munitions-contaminated soils. Present study reports the effect of increasing soil organic matter content on fate and mobility of trinitrotoluene (TNT) and metabolites in soil columns. This study was performed using 30-cm-long columns containing a top 5 cm of contaminated soil as a source layer and an uncontaminated soil (25 cm) adjusted to 0.

View Article and Find Full Text PDF