CORUM (https://mips.helmholtz-muenchen.de/corum/) is a public database that offers comprehensive information about mammalian protein complexes, including their subunits, functions and associations with human diseases.
View Article and Find Full Text PDFBackground: Metabolic Syndrome (MetS) is characterized by risk factors such as abdominal obesity, hypertriglyceridemia, low high-density lipoprotein cholesterol (HDL-C), hypertension, and hyperglycemia, which contribute to the development of cardiovascular disease and type 2 diabetes. Here, we aim to identify candidate metabolite biomarkers of MetS and its associated risk factors to better understand the complex interplay of underlying signaling pathways.
Methods: We quantified serum samples of the KORA F4 study participants (N = 2815) and analyzed 121 metabolites.
The CORUM database has been providing comprehensive reference information about experimentally characterized, mammalian protein complexes and their associated biological and biomedical properties since 2007. Given that most catalytic and regulatory functions of the cell are carried out by protein complexes, their composition and characterization is of greatest importance in basic and disease biology. The new CORUM 4.
View Article and Find Full Text PDFHuman endogenous retrovirus (HERVs), normally silenced by methylation or mutations, can be reactivated by multiple environmental factors, including infections with exogenous viruses. In this work, we investigated the transcriptional activity of HERVs in human A549 cells infected by two wild-type (PR8M, SC35M) and one mutated (SC35MΔNS1) strains of Influenza A virus (IAVs). We found that the majority of differentially expressed HERVs (DEHERVS) and genes (DEGs) were up-regulated in the infected cells, with the most significantly enriched biological processes associated with the genes differentially expressed exclusively in SC35MΔNS1 being linked to the immune system.
View Article and Find Full Text PDFWe need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources.
View Article and Find Full Text PDFThe biological function and disease association of human endogenous retroviruses (HERVs) are largely elusive. HERV-K(HML-2) has been associated with neurotoxicity, but there is no clear understanding of its role or mechanistic basis. We addressed the physiological functions of HERV-K(HML-2) in neuronal differentiation using CRISPR engineering to activate or repress its expression levels in a human-pluripotent-stem-cell-based system.
View Article and Find Full Text PDFIsoform switching is a recently characterized hallmark of cancer, and often translates to the loss or gain of domains mediating protein interactions and thus, the re-wiring of the interactome. Recent computational tools leverage domain-domain interaction data to resolve the condition-specific interaction networks from RNA-Seq data accounting for the domain content of the primary transcripts expressed. Here, we used The Cancer Genome Atlas RNA-Seq datasets to generate 642 patient-specific pairs of interactomes corresponding to both the tumor and the healthy tissues across 13 cancer types.
View Article and Find Full Text PDFCORUM is a database that provides a manually curated repository of experimentally characterized protein complexes from mammalian organisms, mainly human (67%), mouse (15%) and rat (10%). Given the vital functions of these macromolecular machines, their identification and functional characterization is foundational to our understanding of normal and disease biology. The new CORUM 3.
View Article and Find Full Text PDFBackground: Thoroughly annotated data resources are a key requirement in phenotype dependent analysis and diagnosis of diseases in the area of precision medicine. Recent work has shown that curation and systematic annotation of human phenome data can significantly improve the quality and selectivity for the interpretation of inherited diseases. We have therefore developed PhenoDis, a comprehensive, manually annotated database providing symptomatic, genetic and imprinting information about rare cardiac diseases.
View Article and Find Full Text PDFRecognizing that insights into the modulation of sleep duration can emerge by exploring the functional relationships among genes, we used this strategy to explore the genome-wide association results for this trait. We detected two major signalling pathways (ion channels and the ERBB signalling family of tyrosine kinases) that could be replicated across independent GWA studies meta-analyses. To investigate the significance of these pathways for sleep modulation, we performed transcriptome analyses of short sleeping flies' heads (knockdown for the ABCC9 gene homolog; dSur).
View Article and Find Full Text PDFObjective: The comprehensive assaying of low-molecular-weight compounds, for example, metabolomics, provides a unique tool to uncover novel biomarkers and understand pathways underlying myocardial infarction (MI). We used a targeted metabolomics approach to identify biomarkers for MI and evaluate their involvement in the pathogenesis of MI.
Methods And Results: Using three independent, prospective cohorts (KORA S4, KORA S2 and AGES-REFINE), totalling 2257 participants without a history of MI at baseline, we identified metabolites associated with incident MI (266 cases).
Phenotypic drug discovery offers some advantages over target-based methods, mainly because it allows drug leads to be tested in systems that more closely model distinct disease states. However, a potential disadvantage is the difficulty of linking the observed phenotype to a specific cellular target. To address this problem, we developed DePick, a computational target de-convolution tool to determine targets specifically linked to small-molecule phenotypic screens.
View Article and Find Full Text PDFObjective: Metformin is used as a first-line oral treatment for type 2 diabetes (T2D). However, the underlying mechanism is not fully understood. Here, we aimed to comprehensively investigate the pleiotropic effects of metformin.
View Article and Find Full Text PDFDepression risk is exacerbated by genetic factors and stress exposure; however, the biological mechanisms through which these factors interact to confer depression risk are poorly understood. One putative biological mechanism implicates variability in the ability of cortisol, released in response to stress, to trigger a cascade of adaptive genomic and non-genomic processes through glucocorticoid receptor (GR) activation. Here, we demonstrate that common genetic variants in long-range enhancer elements modulate the immediate transcriptional response to GR activation in human blood cells.
View Article and Find Full Text PDFKnowledge about non-interacting proteins (NIPs) is important for training the algorithms to predict protein-protein interactions (PPIs) and for assessing the false positive rates of PPI detection efforts. We present the second version of Negatome, a database of proteins and protein domains that are unlikely to engage in physical interactions (available online at http://mips.helmholtz-muenchen.
View Article and Find Full Text PDFHSC-Explorer (http://mips.helmholtz-muenchen.de/HSC/) is a publicly available, integrative database containing detailed information about the early steps of hematopoiesis.
View Article and Find Full Text PDFThe association of dysregulated microRNAs (miRNAs) and diseases has been shown in a variety of studies. Here, we review a resource denoted as PhenomiR, providing systematic and comprehensive access to such studies. It allows machine-readable access to miRNA and target relations from these studies to study the impact of miRNAs on multifactorial diseases across many samples and biological replicates.
View Article and Find Full Text PDFBackground: In animals, microRNAs (miRNAs) regulate the protein synthesis of their target messenger RNAs (mRNAs) by either translational repression or deadenylation. miRNAs are frequently found to be co-expressed in different tissues and cell types, while some form polycistronic clusters on genomes. Interactions between targets of co-expressed miRNAs (including miRNA clusters) have not yet been systematically investigated.
View Article and Find Full Text PDF