We report the discovery of an electrochemical process that converts two dimensional layered materials of arbitrary thicknesses into monolayers. The lateral dimensions of the monolayers obtained by the process within a few seconds time at room temperature were as large as 0.5 mm.
View Article and Find Full Text PDFA charge gradient microscopy (CGM) probe was used to collect surface screening charges on poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] thin films. These charges are naturally formed on unscreened ferroelectric domains in ambient condition. The CGM data were used to map the local electric current originating from the collected surface charges on the poled ferroelectric domains in the P(VDF-TrFE) thin films.
View Article and Find Full Text PDFAdvanced scanning probe microscopies (SPMs) open up the possibilities of the next-generation ferroic devices that utilize both domains and domain walls as active elements. However, current SPMs lack the capability of dynamically monitoring the motion of domains and domain walls in conjunction with the transport of the screening charges that lower the total electrostatic energy of both domains and domain walls. Charge gradient microscopy (CGM) is a strong candidate to overcome these shortcomings because it can map domains and domain walls at high speed and mechanically remove the screening charges.
View Article and Find Full Text PDFPattern generation of well-controlled block copolymers (BCPs) with a high Flory-Huggins interaction parameter (χ) is important for applications in sub-20 nm nanolithography. We used mixed solvents of dimethylformamide (DMF) and toluene to control the morphology as well as the time to achieve the targeted morphology via self-assembly of BCPs. By precisely controlling the volume ratio of DMF and toluene, well-ordered line, honeycomb, circular hole, and lamellar nanostructures were obtained from a cylinder-forming poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) BCP with high χ.
View Article and Find Full Text PDFIn this article, we demonstrate enhanced electron and hole transport in few-layer phosphorene field effect transistors (FETs) using titanium as the source/drain contact electrode and 20 nm SiO2 as the back gate dielectric. The field effect mobility values were extracted to be ∼38 cm(2)/Vs for electrons and ∼172 cm(2)/Vs for the holes. On the basis of our experimental data, we also comprehensively discuss how the contact resistances arising due to the Schottky barriers at the source and the drain end effect the different regime of the device characteristics and ultimately limit the ON state performance.
View Article and Find Full Text PDFIn this article, we experimentally demonstrate that the transport gap of phosphorene can be tuned monotonically from ∼0.3 to ∼1.0 eV when the flake thickness is scaled down from bulk to a single layer.
View Article and Find Full Text PDFHere we present a simple and fast method to reliably image polarization charges using charge gradient microscopy (CGM). We collected the current from the grounded CGM probe while scanning a periodically poled lithium niobate single crystal and single-crystal LiTaO3 thin film on the Cr electrode. We observed current signals at the domains and domain walls originating from the displacement current and the relocation or removal of surface charges, which enabled us to visualize the ferroelectric domains at a scan frequency above 78 Hz over 10 μm.
View Article and Find Full Text PDFIn this article, we report only 10 atomic layer thick, high mobility, transparent thin film transistors (TFTs) with ambipolar device characteristics fabricated on both a conventional silicon platform as well as on a flexible substrate. Monolayer graphene was used as metal electrodes, 3-4 atomic layers of h-BN were used as the gate dielectric, and finally bilayers of WSe2 were used as the semiconducting channel material for the TFTs. The field effect carrier mobility was extracted to be 45 cm(2)/(V s), which exceeds the mobility values of state of the art amorphous silicon based TFTs by ∼100 times.
View Article and Find Full Text PDFWe present a method for data storage in continuous ferroelectric (FE) media, applicable to storage systems based on one or more scanning probes. Written FE domains are read back in a destructive fashion by applying a constant voltage of magnitude greater than the coercive voltage, as is done in FE random access memory (FeRAM). The resulting flow of screening charges through the readback amplifier provides sufficient signal to allow readback of domains of minimum dimension of the order of 10 nm at MHz rates, orders of magnitude faster than previously demonstrated techniques for readback of domains in continuous FE media.
View Article and Find Full Text PDF