The genes, XRS2 in Saccharomyces cerevisiae and NBN in mammals, have little sequence identity at the amino acid level. Nevertheless, they are both found together with MRE11 and RAD50 in a highly conserved protein complex which functions in the repair of DNA double-strand breaks. Here, we have examined the evolutionary and functional relationship of these two genes by cross-complementation experiments.
View Article and Find Full Text PDFis a popular expression system for recombinant proteins. In most cases, production processes are performed as carbon-limited fed-batch cultures to avoid aerobic ethanol formation. Especially for constitutive expression systems, the specific product formation rate depends on the specific growth rate.
View Article and Find Full Text PDFBio-based succinic acid is receiving increasing attention, as it could provide a cost-effective, ecologically sustainable alternative to the current petrochemical production process, thus promising a significantly higher market potential. The yeast Saccharomyces cerevisiae is a robust and well-established industrial production organism exhibiting an extraordinarily high acid- and osmotolerance. These features in conjunction with the sophisticated toolbox for genetic engineering make it particularly suitable for succinic acid production.
View Article and Find Full Text PDFWith the aim to reduce fermentation by-products and to promote respiratory metabolism by shifting the fermentative/oxidative balance, we evaluated the constitutive overexpression of the SAK1 and HAP4 genes in Saccharomyces cerevisiae. Sak1p is one of three kinases responsible for the phosphorylation, and thereby the activation, of the Snf1p complex, while Hap4p is the activator subunit of the Hap2/3/4/5 transcriptional complex. We compared the physiology of a SAK1-overexpressing strain with that of a strain overexpressing the HAP4 gene in wild-type and sdh2 deletion (respiratory-deficient) backgrounds.
View Article and Find Full Text PDFThe production of bio-based succinic acid is receiving great attention, and several predominantly prokaryotic organisms have been evaluated for this purpose. In this study we report on the suitability of the highly acid- and osmotolerant yeast Saccharomyces cerevisiae as a succinic acid production host. We implemented a metabolic engineering strategy for the oxidative production of succinic acid in yeast by deletion of the genes SDH1, SDH2, IDH1 and IDP1.
View Article and Find Full Text PDF