Publications by authors named "Andreas Quandt"

We report a high quality and system-wide proteome catalogue covering 71% (3,542 proteins) of the predicted genes of fission yeast, Schizosaccharomyces pombe, presenting the largest protein dataset to date for this important model organism. We obtained this high proteome and peptide (11.4 peptides/protein) coverage by a combination of extensive sample fractionation, high resolution Orbitrap mass spectrometry, and combined database searching using the iProphet software as part of the Trans-Proteomics Pipeline.

View Article and Find Full Text PDF

We present a computational pipeline for the quantification of peptides and proteins in label-free LC-MS/MS data sets. The pipeline is composed of tools from the OpenMS software framework and is applicable to the processing of large experiments (50+ samples). We describe several enhancements that we have introduced to OpenMS to realize the implementation of this pipeline.

View Article and Find Full Text PDF

Background: Modern data generation techniques used in distributed systems biology research projects often create datasets of enormous size and diversity. We argue that in order to overcome the challenge of managing those large quantitative datasets and maximise the biological information extracted from them, a sound information system is required. Ease of integration with data analysis pipelines and other computational tools is a key requirement for it.

View Article and Find Full Text PDF

Streptococcus pyogenes is a major bacterial pathogen and a potent inducer of inflammation causing plasma leakage at the site of infection. A combination of label-free quantitative mass spectrometry-based proteomics strategies were used to measure how the intracellular proteome homeostasis of S. pyogenes is influenced by the presence of human plasma, identifying and quantifying 842 proteins.

View Article and Find Full Text PDF

The identification and characterization of peptides from MS/MS data represents a critical aspect of proteomics. It has been the subject of extensive research in bioinformatics resulting in the generation of a fair number of identification software tools. Most often, only one program with a specific and unvarying set of parameters is selected for identifying proteins.

View Article and Find Full Text PDF

The identification and characterization of peptides from tandem mass spectrometry (MS/MS) data represents a critical aspect of proteomics. Today, tandem MS analysis is often performed by only using a single identification program achieving identification rates between 10-50% (Elias and Gygi, 2007). Beside the development of new analysis tools, recent publications describe also the pipelining of different search programs to increase the identification rate (Hartler et al.

View Article and Find Full Text PDF

Biomarker detection is one of the greatest challenges in Clinical Proteomics. Today, great hopes are placed into tandem mass spectrometry (MS/MS) to discover potential biomarkers. MS/MS is a technique that allows large scale data analysis, including the identification, characterization, and quantification of molecules.

View Article and Find Full Text PDF

Peak detection is a key step in the analysis of SELDI-TOF-MS spectra, but the current default method has low specificity and poor peak annotation. To improve data quality, scientists still have to validate the identified peaks visually, a tedious and time-consuming process, especially for large data sets. Hence, there is a genuine need for methods that minimize manual validation.

View Article and Find Full Text PDF

Motivation: There is a well-recognized potential of protein expression profiling using the surface-enhanced laser desorption and ionization technology for discovering biomarkers that can be applied in clinical diagnosis, prognosis and therapy prediction. The pre-processing of the raw data, however, is still problematic.

Methods: We focus on the peak detection step, where the standard method is marked by poor specificity.

View Article and Find Full Text PDF