Objectives: The purpose of this study was to report patterns of scapular fractures and define them with a contemporary methodology.
Design: Retrospective study, 2015-2021.
Setting: Single, academic, Level 1 trauma center.
Introduction: For successful intramedullary implant placement at the femur, such as nailing in unstable proximal femur fractures, the use of an implant that at least reaches or exceeds the femoral isthmus and yields sufficient thickness is recommended. A number of complications after intramedullary femoral nailing have been reported, particularly in Asians. To understand the anatomical features of the proximal femur and their ethnic differences, we aimed to accurately calculate the femoral isthmus dimensions and proximal distance of Asians and Caucasians.
View Article and Find Full Text PDFObjectives: To identify the ideal distal nail position in the distal tibia, using a computed tomography analysis.
Methods: Three-dimensional models of 860 left tibiae were analyzed using the Stryker Orthopaedic Modeling and Analytics software (SOMA, Stryker, Kiel, Germany). The nail axis was defined by 7 center points at the middle of the inner cortical boundary.
To optimize the placement of iliosacral screws in osteoporotic bone it is essential to know where to find the best purchase. The aim of this study was to determine and visualize the distribution of bone mass in the posterior pelvic ring by using a color-coded thermal map, to differentiate the bone distribution patterns in normal pelvises and in pelvises with impaired bone density and to identify zones in S1 and S2 with particularly good bone quality, in both healthy and osteoporotic pelvises. A total of 324 pelvises were included.
View Article and Find Full Text PDFBackground: Differences in proximal femoral morphology between ethnicities may have implications on the design of cementless tapered wedge stems. This study analyses the differences in Asian and Caucasian bone morphology as well as the related fit of various cementless tapered wedge stem designs.
Methods: A computed tomography database and modelling software was used to retrospectively analyse a total of 1345 femora.
This study evaluated the implementation and effectiveness of an iterative process aimed to quantify and enhance the anatomical fit of an osteosynthesis plate design for the fifth metacarpal bone regarding a defined shape-based acceptance criterion (SAC) while complying with basic clinical requirements and engineering limitations. The process was based on employing virtual tools (a database of individual three-dimensional bone models, statistical analysis of the bone geometry, and proprietary software tools) to evaluate conformity between plate designs and bone shape. The conformity was quantified by the mean distance between plate and bone (MBP).
View Article and Find Full Text PDFObjective: To quantify intrapelvic surface symmetry in reference to a preshaped suprapectineal acetabular implant.
Methods: In this cross-sectional study, an anatomically preshaped acetabular fracture implant was fitted on 3D surface models of 516 pelvises from a preexisting bone database using a software tool for automated implant fitting (SOMA, Stryker Orthopaedic Modeling and Analytics) of a CAD model of the implant. The distances between bone and the reference implant were measured at 2310 reference points for each hemipelvis.
Introduction: For optimal treatment of femoral fractures, it is essential to understand the anatomical antecurvation of the human femur. Recent clinical studies have highlighted the problem of distal anterior encroachment or even perforation of the nail tip. The aim of this study was to accurately describe the femoral antecurvation in a large cohort.
View Article and Find Full Text PDFOsteosynthesis plate designs with high levels of anatomical compliance have been demonstrated to have numerous clinical benefits. The purpose of this paper is to introduce a systematic numeric approach for anatomic plate design on the example of the distal medial tibia. The advantage of using numeric approaches for plate design is to gain objective and complete anatomical input as opposed to cadaveric investigations with limited sample sizes.
View Article and Find Full Text PDFDue to the differences in bone morphology between demographics such as age, gender, body mass index, and ethnicity, the development of orthopaedic implants requires a large number of anatomical data from various patient populations. In an effort to assess these demographic variations, Stryker Orthopaedic Modeling and Analytics (SOMA) has been developed. SOMA is a suite of tools which utilizes a comprehensive database of computed tomography scans (CT-scans), plus associated three-dimensional (3D) bone models, allowing the user to assess population differences in bone morphology, bone density, and implant fit for the purposes of research and development.
View Article and Find Full Text PDFBackground: Impaired bone structure poses a challenge for the treatment of osteoporotic tibial plateau fractures. As knowledge of region-specific structural bone alterations is a prerequisite to achieving successful long-term fixation, the aim of the current study was to characterize tibial plateau bone structure in patients with osteoporosis and the elderly.
Methods: Histomorphometric parameters were assessed by high-resolution peripheral quantitative computed tomography (HR-pQCT) in 21 proximal tibiae from females with postmenopausal osteoporosis (mean age: 84.
Fracture mapping has been used in the understanding of injury patterns in different bones. To our knowledge, there are no applications of this technique using three-dimensional (3D) morphologic fracture characteristics. Previously, scapula fractures were mapped by transferring information from 3D computed tomography to a two-dimensional (2D) template.
View Article and Find Full Text PDFIntroduction: Exact knowledge of femoral neck inclination and torsion angles is important in recognizing, understanding and treating pathologic conditions in the hip joint. However, published results vary widely between different studies, which indicates that there are persistent difficulties in carrying out exact measurements.
Methods: A three dimensional modeling and analytical technology was used for the analysis of 1070 CT datasets of skeletally mature femurs.
The geometry of the femur is important in the final position of an intramedullary implant; we hypothesised that the femoral geometry changes with age and this may predispose the elderly to anterior mal-positioning of these implants. We used CT DICOM data of 919 intact left femora and specialist software that allowed us to defined landmarks for measurement reference - such as the linea aspera - on a template bone that could be mapped automatically to the entire database. We found that older (>80 years) cortical bone is up to 1.
View Article and Find Full Text PDFJ Craniomaxillofac Surg
December 2010
Purpose: The virtual environment of the Voxel-Man simulator that was originally designed for virtual surgical procedures of the middle ear has been adapted to intraoral procedures. To assess application of the simulator to dentistry, virtual apicectomies were chosen as the pilot-test model.
Methods: A group of 53 dental students provided their impressions after virtual simulation of apicectomies in the Voxel-Man simulator.
Objectives/hypothesis: Virtual surgical training systems are of growing value. Current prototypes for endonasal sinus surgery simulation are very expensive or lack running stability. No reliable system is available to a notable number of users yet.
View Article and Find Full Text PDFRationale And Objectives: The aim of the study is to show the possibilities opened up by three-dimensional (3D) computer-based models of the human body for education in anatomy, training of radiological and endoscopic examinations, and simulation of surgical procedures.
Materials And Methods: Based on 3D data sets obtained from the Visible Human and/or clinical cases, virtual body models are created that provide an integrated spatial and symbolic description of the anatomy by using interactive color/intensity-based segmentation, ray casting visualization with subvoxel resolution, a semantic network for knowledge modeling, and augmented QuickTime VR (Apple Computer, Inc, Cupertino, CA) movies for presentation.
Results: From these models, various radiological, endoscopic, or haptic manifestations of the body can be derived.
A profound knowledge of anatomy and surgical landmarks of the temporal bone is a basic necessity for any otologic surgeon. Because this knowledge, so far, has been mostly taught by limited temporal bone drilling courses, our objective was to create a system for virtual petrous bone surgery that allows the realistic simulation of specific laterobasal surgical approaches. A major requirement was the development of an interactive drill-like tool, together with a new technique for realistic visualization of simulated cut surfaces.
View Article and Find Full Text PDF