Publications by authors named "Andreas Perrar"

Substrate sequence specificity is a fundamental characteristic of proteolytic enzymes. Hundreds of proteases are encoded in plant genomes, but the vast majority of them have not been characterized and their distinct specificity remains largely unknown. Here we present our current protocol for profiling sequence specificity of plant proteases using Proteomic Identification of Cleavage Sites (PICS).

View Article and Find Full Text PDF

Protein N-termini provide unique and distinguishing information on proteolytically processed or N-terminally modified proteoforms. Also splicing, use of alternative translation initiation sites, and a variety of co- and post-translational N-terminal modifications generate distinct proteoforms that are unambiguously identified by their N-termini. However, N-terminal peptides are only a small fraction among all peptides generated in a shotgun proteome digest, are often of low stoichiometric abundance, and therefore require enrichment.

View Article and Find Full Text PDF

The amoeba Paulinella chromatophora contains photosynthetic organelles, termed chromatophores, which evolved independently from plastids in plants and algae. At least one-third of the chromatophore proteome consists of nucleus-encoded (NE) proteins that are imported across the chromatophore double envelope membranes. Chromatophore-targeted proteins exceeding 250 amino acids (aa) carry a conserved N-terminal extension presumably involved in protein targeting, termed the chromatophore transit peptide (crTP).

View Article and Find Full Text PDF

The ATP-dependent metalloprotease FtsH12 (filamentation temperature sensitive protein H 12) has been suggested to participate in a heteromeric motor complex, driving protein translocation into the chloroplast. FtsH12 was immuno-detected in proplastids, seedlings, leaves, and roots. Expression of Myc-tagged FtsH12 under its native promotor allowed identification of FtsHi1, 2, 4, and 5, and plastidic NAD-malate dehydrogenase, five of the six interaction partners in the suggested import motor complex.

View Article and Find Full Text PDF

Bottom-up mass spectrometry-based proteomics utilizes proteolytic enzymes with well characterized specificities to generate peptides amenable for identification by high-throughput tandem mass spectrometry. Trypsin, which cuts specifically after the basic residues lysine and arginine, is the predominant enzyme used for proteome digestion, although proteases with alternative specificities are required to detect sequences that are not accessible after tryptic digest. Here, we show that the human cysteine protease legumain exhibits a strict substrate specificity for cleavage after asparagine and aspartic acid residues during in-solution digestions of proteomes extracted from , mouse embryonic fibroblast cell cultures, and leaves.

View Article and Find Full Text PDF

Dynamic regulation of protein function and abundance plays an important role in virtually every aspect of plant life. Diversifying mechanisms at the RNA and protein level result in many protein molecules with distinct sequence and modification, termed proteoforms, arising from a single gene. Distinct protein termini define proteoforms arising from translation of alternative transcripts, use of alternative translation initiation sites, and different co- and post-translational modifications of the protein termini.

View Article and Find Full Text PDF

Fungalysins from several phytopathogenic fungi have been shown to be involved in cleavage of plant chitinases. While fungal chitinases are responsible for cell wall remodeling during growth and morphogenesis, plant chitinases are important components of immunity. This study describes a dual function of the Ustilago maydis fungalysin UmFly1 in modulation of both plant and fungal chitinases.

View Article and Find Full Text PDF