Monitoring data are necessary for the future production of engineered nanomaterials and the development of regulations for nanomaterials. Therefore, it is necessary to develop methods that reliably detect and quantify nanomaterials in real-world systems at expectedly low concentrations. In this work we tested several methodological approaches to detect titanium dioxide nanomaterials released from sunscreen products into the Old Danube Lake (Vienna, Austria), which is heavily used for recreational activities like bathing and water sports during the summer season.
View Article and Find Full Text PDFTo study the effects of complex environmental media on silver nanoparticle (AgNP) toxicity, AgNPs were added to microcosms with freshwater sediments and two species of aquatic plants (Potamogeton diversifolius and Egeria densa), followed by toxicity testing with microcosm surface water. Microcosms were designed with four environmental matrices in order to determine the contribution of each environmental compartment to changes in toxicity: water only (W), water + sediment (WS), water + plants (WP), and water + plants + sediment (WPS). Silver treatments included AgNPs with two different coatings, gum arabic (GA-AgNPs) or polyvinylpyrollidone (PVP-AgNPs), as well as AgNO(3).
View Article and Find Full Text PDFTo better understand their fate and toxicity in aquatic environments, we compared the aggregation and dissolution behavior of gum arabic (GA) and polyvinylpyrrolidone (PVP) coated Ag nanoparticles (NPs) in aquatic microcosms. There were four microcosm types: surface water; water and sediment; water and aquatic plants; or water, sediment, and aquatic plants. Dissolution and aggregation behavior of AgNPs were examined using ultracentrifugation, ultrafiltration, and asymmetrical flow field flow fractionation coupled to ultraviolet-visible spectroscopy, dynamic and static laser light scattering, and inductively coupled plasma mass spectrometry.
View Article and Find Full Text PDFThe persistence of silver nanoparticles in aquatic environments and their subsequent impact on organisms depends on key transformation processes, which include aggregation, dissolution, and surface modifications by metal-complexing ligands. Here, we studied how cysteine, an amino acid representative of thiol ligands that bind monovalent silver, can alter the surface chemistry, aggregation, and dissolution of zero-valent silver nanoparticles. We compared nanoparticles synthesized with two coatings, citrate and polyvinylpirrolidone (PVP), and prepared nanoparticle suspensions (approximately 8 μM total Ag) containing an excess of cysteine (400 μM).
View Article and Find Full Text PDFThe rapidly increasing use of silver nanoparticles (Ag NPs) in consumer products and medical applications has raised ecological and human health concerns. A key question for addressing these concerns is whether Ag NP toxicity is mechanistically unique to nanoparticulate silver, or if it is a result of the release of silver ions. Furthermore, since Ag NPs are produced in a large variety of monomer sizes and coatings, and since their physicochemical behavior depends on the media composition, it is important to understand how these variables modulate toxicity.
View Article and Find Full Text PDFMineral sulfide colloids and nanoparticles are important for the aquatic fate and transport of toxic metals such as zinc and mercury in anaerobic environments. The persistence of metal sulfides in the colloidal form is likely to depend on surface interactions with dissolved natural organic matter. In this work, we investigated the sorption of cysteine and serine on ZnS and HgS particles and the implications for colloidal stability.
View Article and Find Full Text PDF