Forensic genetic laboratories perform an increasing amount of genetic analyses of the X chromosome, in particular to solve complex cases of kinship analysis. For some biological relationships X-chromosomal markers can be more informative than autosomal markers, and there are a large number of markers, methods and databases that have been described for forensic use. Due to their particular mode of inheritance, and their physical location on a single chromosome, some specific considerations are required when estimating the weight of evidence for X-chromosomal marker DNA data.
View Article and Find Full Text PDFAdvances in massively parallel sequencing technology have enabled the combination of a much-expanded number of DNA markers (notably STRs and SNPs in one or combined multiplexes), with the aim of increasing the weight of evidence in forensic casework. However, when data from multiple loci on the same chromosome are used, genetic linkage can affect the final likelihood calculation. In order to study the effect of linkage for different sets of markers we developed the biostatistical tool ILIR, (Impact of Linkage on forensic markers for Identity and Relationship tests).
View Article and Find Full Text PDFWithin forensic genetics, there is still a need for supplementary DNA marker typing in order to increase the power to solve cases for both identity testing and complex kinship issues. One major disadvantage with current capillary electrophoresis (CE) methods is the limitation in DNA marker multiplex capability. By utilizing massive parallel sequencing (MPS) technology, this capability can, however, be increased.
View Article and Find Full Text PDFThe use of genetic markers located on the X chromosome has seen a significant increase in the last years and their utility has been well studied. This paper describes the software FamLinkX, freely available at http://www.famlink.
View Article and Find Full Text PDFThe vast majority of human familial identifications based on DNA end up with a well founded conclusion, normally using a standard set of genetic short tandem repeat (STR) loci. There are, however, a proportion of cases that show ambiguous results. For such occasions a number of different supplementary markers could be typed in order to gain further information.
View Article and Find Full Text PDFIn relationship testing the aim is to determine the most probable pedigree structure given genetic marker data for a set of persons. Disaster Victim Identification (DVI) based on DNA data from presumed relatives of the missing persons can be considered to be a collection of relationship problems. Forensic calculations in investigative mode address questions like "How many markers and reference persons are needed?" Such questions can be answered by simulations.
View Article and Find Full Text PDFSpecies identification can be interesting in a wide range of areas, for example, in forensic applications, food monitoring and in archeology. The vast majority of existing DNA typing methods developed for species determination, mainly focuses on a single species source. There are, however, many instances where all species from mixed sources need to be determined, even when the species in minority constitutes less than 1 % of the sample.
View Article and Find Full Text PDFIn this study, allele frequencies for 29 autosomal short tandem repeats (STRs) and haplotype frequencies for 17 Y-chromosomal STRs of an Afghan population have been generated. Samples from 348 men and women originating from Afghanistan were analysed for the autosomal STRs, and the combined match probability was estimated to be 7.5 × 10(-37).
View Article and Find Full Text PDFIdeally for use in forensic analyses, genetic markers on the same chromosome should be more than 50 Mb in physical distance to ensure full recombination and thus independent inheritance. The forensic community has given attention to two STR markers, D12S391 and vWA, that are 6.3 megabases (Mb) apart on chromosome 12.
View Article and Find Full Text PDFForensic Sci Int Genet
September 2012
The present number of STR loci adopted in relationship testing is chiefly limited to unlinked markers, in most cases residing on different chromosomes. In order to solve more complex cases of relatedness, e.g.
View Article and Find Full Text PDFX-chromosomal markers in forensic genetics have become more widely used during recent years, particularly for relationship testing. Linkage and linkage disequilibrium (LD) must typically be accounted for when using close X-chromosomal markers. Thus, when producing the weight-of-evidence, given by a DNA-analysis with markers that are linked, the normally used product rule is invalid.
View Article and Find Full Text PDFForensic Sci Int Genet
December 2009
Allele frequencies for 15 autosomal STR loci included in the AmpFlSTR Identifiler kit (CSF1PO, D13S317, D16S539, D18S51, D19S433, D21S11, D2S1338, D3S1358, D5S818, D7S820, D8S1179, FGA, TH01, TPOX, VWA) were obtained from the analysis of 404 individuals with Somali origin. The overall match probability for the 15 studied loci was 1 in 1.18 x 10(17) and the combined power of exclusion was 0.
View Article and Find Full Text PDFIn order to promote mitochondrial DNA (mtDNA) testing in Sweden we have typed 296 Swedish males, which will serve as a Swedish mtDNA frequency database. The tested males were taken from seven geographically different regions representing the contemporary Swedish population. The complete mtDNA control region was typed and the Swedish population was shown to have high haplotype diversity with a random match probability of 0.
View Article and Find Full Text PDFForensic Sci Int Genet
December 2008
X-chromosomal short tandem repeats (X-STR) have proven to be informative and useful in complex relationship testing. The main feature of X-STR markers, compared to autosomal forensic markers, is that all loci are located on the same chromosome. Thus, linkage and linkage disequilibrium may occur.
View Article and Find Full Text PDF