We investigate high fidelity channel replication approaching the idealized notion of channel cloning with negligible excess noise and distortion. Previously proposed cloning architectures require that the channel carriers to be externally seeded, limiting their ultimate usefulness, whereas the self-seeded approach limits the channel number and signal-to-noise ratio. Specifically, when a single channel is replicated, the noise figure (NF) remains above the well-known 3-dB limit, and multi-channel replication by a dual-pump driven parametric mixer faces a theoretical NF limit of 6-dB.
View Article and Find Full Text PDFFour-mode phase-sensitive (4MPS) process has been employed in a parametric mixer based wavelength multicaster, enhancing the multicasting conversion efficiency and signal-to-noise ratio. In addition, the 4MPS parametric multicaster is an outstanding candidate for all-optical regeneration, owing to its inherent capabilities to clamp amplitude fluctuations by the saturated parametric effect and to squeeze phase distortions by the phase sensitive process. The investigation in this paper focuses on the 4MPS multicaster operated in the saturation gain regime, including theoretical simulations and experimental demonstrations on amplitude and phase noise regeneration over 20 multicasting signal copies.
View Article and Find Full Text PDFUltrafast all-optical switching in a highly nonlinear fiber with a longitudinally varied zero-dispersion wavelength was investigated theoretically and experimentally. We describe fiber-matched methodology for construction of a fast, low energy photon switch. The design relies on static and dynamic models and allows performance target selection, under constraints of physical fiber characteristic.
View Article and Find Full Text PDFStable four-mode phase-sensitive (4MPS) process was investigated as a means to enhance two-pump driven parametric multicasting conversion efficiency (CE) and signal to noise ratio (SNR). Instability of multi-beam, phase sensitive (PS) device that inherently behaves as an interferometer, with output subject to ambient induced fluctuations, was addressed theoretically and experimentally. A new stabilization technique that controls phases of three input waves of the 4MPS multicaster and maximizes CE was developed and described.
View Article and Find Full Text PDFNoise performance of dual-pump, multi-sideband parametric mixer operated in phase-insensitive mode is investigated theoretically and experimentally. It is shown that, in case when a large number of multicasting idlers are generated, the noise performance is strictly dictated by the dispersion characteristics of the mixer. We find that the sideband noise performance is significantly degraded in anomalous dispersion region permitting nonlinear noise amplification.
View Article and Find Full Text PDFNew technique for cancellation of nonlinear cross-talk in polychromatic parametric sampling gate is described and quantified. The method relies on a newly derived look-up table method that achieves equalization and suppresses nonlinear response associated with parametric sampling operation. The new cancellation scheme is implemented in a framework of a specific parametric photonics assisted analog-to-digital conversion (ADC) copy-and-sample-all (CaSA) architecture.
View Article and Find Full Text PDFNoise properties of large-count spectral multicasting in a phase-insensitive parametric mixer were investigated. Scalable multicasting was achieved using two-tone continuous-wave seeded mixers capable of generating more than 20 frequency non-degenerate copies. The mixer was constructed using a multistage architecture to simultaneously manage high Figure-of-Merit frequency generation and suppress noise generation.
View Article and Find Full Text PDFA photonic preprocessor for analog to digital conversion is demonstrated and characterized using a cavity-less optical pulse source. The pulse source generates high fidelity pulses at 2 GHz repetition rate with temporal width of 3 ps. Chirped pulses are formed by cascaded amplitude and phase modulators, and subsequently compressed in dispersion compensating fiber.
View Article and Find Full Text PDFA high quality cavity-less pulse source, realized as a combination of linear pulse compression and self-phase-modulation (SPM) based regeneration is demonstrated and strictly characterized for the first time. The regenerated pulses, with 3.6 GHz repetition rate, are optimized through rigorous relative intensity-noise (RIN) measurement.
View Article and Find Full Text PDFOptical frequency multicasting with significantly enhanced signal-to-noise-ratio (SNR) is demonstrated over wide wavelength range. High-fidelity multicasting relies on a four-mode phase-sensitive (PS) parametric process. Four-mode seeding was used to drive dual-pump, multistage mixer and achieve high-efficiency frequency comb generation and signal replication assisted by field interference.
View Article and Find Full Text PDFWe demonstrate new technique for generation of programmable-pitch, wideband frequency combs with low phase noise. The comb generation was achieved using cavity-less, multistage mixer driven by two tunable continuous-wave pump seeds. The approach relies on phase-correlated continuous-wave pumps in order to cancel spectral linewidth broadening inherent to parametric comb generation.
View Article and Find Full Text PDFWe present the experimental demonstration of broadband four-wave mixing in a 2.5 cm-long segment of AsSe Chalcogenide microstructured fiber. The parametric mixing was driven by a continuous-wave pump compatible with data signal wavelength conversion.
View Article and Find Full Text PDFWe propose and demonstrate a photonic approach to a reconfigurable channelized radio frequency (RF) receiver for instantaneous RF spectrum monitoring and analysis. Our approach relies on the generation of high quality copies of the RF input by wavelength multicasting in a 2- pump self-seeded parametric mixer and the use of off-the-shelf filtering element such as Fabry-Perot etalon and wavelength division demultiplexers. The parametric channelizer scheme trades frequency non-degeneracy of the newly generated copies for ease of filtering design.
View Article and Find Full Text PDFWe report the generation of an optical time division multiplexed single data channel at 160 Gb/s using a one-pump fiber-optic parametric amplifier, and its subsequent multicasting. A two-pump fiber optic parametric amplifier was used to perform all-optical multicasting of 160 Gb/s channel to four data streams. New processing scheme combined the increase in signal extinction ratio and low-impairment multicasting using continuous-wave parametric pumps.
View Article and Find Full Text PDF