To achieve convincing remote vibrotactile experiences, it is necessary to transmit a large number of signal channels corresponding to dense interaction points on the human skin. This leads to a dramatic increase in the amount of data to be transmitted. In order to cope with these data efficiently, vibrotactile codecs have to be used to reduce the data rate demands.
View Article and Find Full Text PDFWe present a neural network-based compression artifact removal technique for vibrotactile signals. The proposed decoder-side quality enhancement approach is based on recurrent neural networks (RNNs) and the principle of residual learning. We use a total of 8 nonlinear RNN layers trained to first estimate the difference between the original and the compressed signal.
View Article and Find Full Text PDFIn this article, we present a comprehensive scheme for the quality assessment of compressed vibrotactile signals with human assessors. Inspired by the multiple stimulus test with hidden reference and anchors (MUSHRA) from the audio domain, we designed a method in which each compressed signal is compared to its original signal and rated on a numerical scale. For each signal tested, the hidden reference and two anchor signals are used to validate the results and provide assessor screening criteria.
View Article and Find Full Text PDFIn order to provide convincing artifical touch sensations, humans should be presented with high quality haptic stimuli. In the vibrotactile domain, signals are usually displayed through mechanical actuators. Current high quality actuators exhibit a high dynamic range and have the ability to display a wide range of frequencies.
View Article and Find Full Text PDFIEEE Trans Haptics
January 2020
We present a novel input/output device to display the tactile properties of surface materials. The proposed Tactile Computer Mouse (TCM) is equipped with a series of actuators that can create perceptually relevant tactile cues to a user. The display capabilities of our TCM match the major tactile dimensions in human surface material perception, namely, hardness, friction, warmth, microscopic roughness, and macroscopic roughness.
View Article and Find Full Text PDFThe eukaryotic cell cycle is regulated by a network of different protein kinases and phosphatases which are by various mechanisms linked to the growth suppressor p53. Cell cycle regulation is quite similar from yeast to man. Although there is no endogenous p53 in yeast expression of human p53 led to growth arrest of yeast cells which can be suppressed by simultaneous overexpression of cdc25C, a phosphatase regulating entry into mitosis.
View Article and Find Full Text PDFInt J Biochem Cell Biol
September 2007
cdc25C is a phosphatase which regulates the activity of the mitosis promoting factor cyclin B/cdk1 by dephosphorylation, thus triggering G(2)/M transition. The activity and the sub-cellular localisation of cdc25C are regulated by phosphorylation. It is well accepted that cdc25C has to enter the nucleus to activate the cyclin B/cdk1 complex at G(2)/M transition.
View Article and Find Full Text PDFcdc25C is a phosphatase which regulates the activity of the mitosis promoting factor cyclin B/cdk1 by dephosphorylation, thus triggering G(2)/M transition. The activity of cdc25C is regulated by phosphorylation which by itself is implicated in regulating the subcellular localization. It is well accepted that cdc25C has to enter the nucleus to activate the cyclin B/cdk1 complex at G(2)/M transition.
View Article and Find Full Text PDFcdc25C is a phosphatase, which activates the mitosis-promoting factor cyclin B1/cdc2 by dephosphorylation, and thus triggers G(2)/M transition. The activity of cdc25C itself is controlled by phosphorylation of certain amino-acid residues, which among other things determines the subcellular localization of the enzyme. Here, we describe a new phosphorylation site at threonine 236 of cdc25C, which is phosphorylated by protein kinase CK2.
View Article and Find Full Text PDF