Publications by authors named "Andreas Nandy"

Background: Despite the efficacy of allergen-specific immunotherapy (AIT), the role of trained immunity and tolerance in this process has not been elucidated.

Objective: Here, we have performed a comprehensive longitudinal analysis of the systemic innate immune cell repertoire during the course of AIT.

Methods: Patients with allergy received standard preseasonal subcutaneous AIT with allergoids to birch and/or grass.

View Article and Find Full Text PDF

The seventh "Future of the Allergists and Specific Immunotherapy (FASIT)" workshop held in 2019 provided a platform for global experts from academia, allergy clinics, regulatory authorities and industry to review current developments in the field of allergen immunotherapy (AIT). Key domains of the meeting included the following: (a) Biomarkers for AIT and allergic asthma; (b) visions for the future of AIT; (c) progress and data for AIT in asthma and the updates of GINA and EAACI Asthma Guidelines (separated for house dust mite SCIT, SLIT tablets and SLIT drops; patient populations) including a review of clinically relevant endpoints in AIT studies in asthma; (d) regulatory prerequisites such as the "Therapy Allergen Ordinance" in Germany; (e) optimization of trial design in AIT clinical research; (f) challenges planning and conducting phase III (field) studies and the future role of Allergen Exposure Chambers (AEC) in AIT product development from the regulatory point of view. We report a summary of panel discussions of all six domains and highlight unmet needs and possible solutions for the future.

View Article and Find Full Text PDF

A systematic nomenclature for allergens originated in the early 1980s, when few protein allergens had been described. A group of scientists led by Dr. David G.

View Article and Find Full Text PDF

Background: Phl p 4 is a major pollen allergen but exhibits lower allergenicity than other major allergens. The natural protein is glycosylated and shows cross-reactivity with related and structurally unrelated allergens.

Objective: We sought to determine the high-resolution crystal structure of Phl p 4 and to evaluate the immunologic properties of the recombinant allergen in comparison with natural Phl p 4.

View Article and Find Full Text PDF

Background: The generation and maintenance of allergen-specific T-cell tolerance is a key step in healthy immune responses to allergens and successful allergen-specific immunotherapy. Breaking of peripheral T-cell tolerance to allergens can lead to the development of allergies, but the mechanisms are not completely understood.

Objective: We sought to identify molecular mechanisms that break allergen-specific T-cell tolerance in human subjects.

View Article and Find Full Text PDF

Background: Phl p 5 is a major allergen of Timothy grass (Phleum pratense). A recombinant native Phl p 5 has already been used in clinical trials of allergen-specific immunotherapy as a component of a cocktail of allergens. Recombinant hypoallergenic allergens should further improve the treatment by reducing the risk of anaphylactic reactions at an increased therapeutic dosage.

View Article and Find Full Text PDF

Recombinant DNA technology provides the means for producing allergens that are equivalent to their natural counterparts and also genetically engineered variants with reduced IgE-binding activity. The proteins are produced as chemically defined molecules with consistent structural and immunologic properties. Several hundred allergens have been cloned and expressed as recombinant proteins, and these provide the means for making a very detailed diagnosis of a patient's sensitization profile.

View Article and Find Full Text PDF

Recombinant production in bacteria of soluble and monomeric Phl p 1, a major allergen of Timothy grass pollen, has proved to be very problematic. In order to facilitate expression and purification of this allergen, a recombinant variant was designed with a single amino acid substitution. Several comparative analyses with natural counterparts using electrophoretic and HPLC separations, together with immunological assays, demonstrated high equivalence.

View Article and Find Full Text PDF

Recombinant DNA technology has delivered the prospect of a new generation of preparations for allergen-specific immunotherapy. The first clinical studies with recombinant allergens have yielded encouraging results, suggesting that there is a good chance that such preparations will become available for use in the routine management of allergic disease.

View Article and Find Full Text PDF

Grass pollen allergy is one of the most important allergic diseases world-wide. Several meadow grasses, like timothy grass and rye grass, contribute to allergic sensitizations, but also allergens from extensively cultivated cereals, especially rye, make a profound contribution. The group 4 allergens are well known as important major allergens of grasses.

View Article and Find Full Text PDF

The cloning and production of an increasing number of allergens through the use of DNA technology has provided the opportunity to use these proteins instead of natural allergen extracts for the diagnosis and therapy of IgE-mediated allergic disease. For diagnostic purposes, it is essential that the molecules exhibit IgE-reactivity comparable with that of the natural wild-type molecules, whereas T cell reactivity and immunogenic activity may be more important for allergen-specific immunotherapy. In relation to the latter, the development of hypoallergenic recombinant allergen variants is an approach which shows great promise.

View Article and Find Full Text PDF

The promyelocytic leukaemia zinc finger (PLZF) protein belongs to the family of Krüppel-like zinc finger proteins. It is a transcriptional repressor involved in cell cycle control and has been implicated in limb development, differentiation of myeloid cells, and spermatogenesis. Little is known about the regulation of PLZF expression.

View Article and Find Full Text PDF