Ninein is a centrosome protein that has been implicated in microtubule anchorage and centrosome cohesion. Mutations in the human gene have been linked to Seckel syndrome and to a rare form of skeletal dysplasia. However, the role of ninein in skeletal development remains unknown.
View Article and Find Full Text PDFCentriole biogenesis and maintenance are crucial for cells to generate cilia and assemble centrosomes that function as microtubule organizing centers (MTOCs). Centriole biogenesis and MTOC function both require the microtubule nucleator γ-tubulin ring complex (γTuRC). It is widely accepted that γTuRC nucleates microtubules from the pericentriolar material that is associated with the proximal part of centrioles.
View Article and Find Full Text PDFThe native γ-tubulin ring complex is an asymmetric, imperfect template for microtubule nucleation. Wieczorek et al. (2021.
View Article and Find Full Text PDFγ-Tubulin is the main protein involved in the nucleation of microtubules in all eukaryotes. It forms two different complexes with proteins of the GCP family (γ-tubulin complex proteins): γ-tubulin small complexes (γTuSCs) that contain γ-tubulin, and GCPs 2 and 3; and γ-tubulin ring complexes (γTuRCs) that contain multiple γTuSCs in addition to GCPs 4, 5 and 6. Whereas the structure and assembly properties of γTuSCs have been intensively studied, little is known about the assembly of γTuRCs and the specific roles of GCPs 4, 5 and 6.
View Article and Find Full Text PDFIn mammalian skin, ninein localizes to the centrosomes of progenitor cells and relocates to the cell cortex upon differentiation of keratinocytes, where cortical arrays of microtubules are formed. To examine the function of ninein in skin development, we use epidermis-specific and constitutive ninein-knockout mice to demonstrate that ninein is necessary for maintaining regular protein levels of the differentiation markers filaggrin and involucrin, for the formation of desmosomes, for the secretion of lamellar bodies, and for the formation of the epidermal barrier. Ninein-deficient mice are viable but develop a thinner skin with partly impaired epidermal barrier.
View Article and Find Full Text PDFBackground: A variety of human skin disorders is characterized by defects in the epidermal barrier, leading to dehydration, itchiness, and rashes. Previously published literature suggests that microtubule stabilization at the cortex of differentiating keratinocytes is necessary for the formation of the epidermal barrier.
Objectives: We tested whether stabilization of microtubules with paclitaxel or epothilone B can repair barrier defects that were experimentally induced in three-dimensional culture models of epidermis.
Microtubules are major constituents of the cytoskeleton in all eukaryotic cells. They are essential for chromosome segregation during cell division, for directional intracellular transport and for building specialized cellular structures such as cilia or flagella. Their assembly has to be controlled spatially and temporally.
View Article and Find Full Text PDFCentriolar satellites are small electron-dense structures in the cytoplasm, mostly surrounding the pericentriolar material. Initially viewed as shuttles for the transport of centrosomal proteins, they have been implicated in the assembly of the pericentriolar material and in ciliogenesis. Although numerous proteins have been identified as components of centriolar satellites, their molecular function remains unclear.
View Article and Find Full Text PDFMitotic-spindle organizing protein associated with a ring of γ-tubulin 1 (MOZART1) is an 8.5 kDa protein linked to regulation of γ-tubulin ring complexes (γTuRCs), which are involved in nucleation of microtubules. Despite its small size, MOZART1 represents a challenging target for detailed characterization in vitro.
View Article and Find Full Text PDFMyotubes are syncytial cells generated by fusion of myoblasts. Among the numerous nuclei in myotubes of skeletal muscle fibres, the majority are equidistantly positioned at the periphery, except for clusters of multiple nuclei underneath the motor endplate. The correct positioning of nuclei is thought to be important for muscle function and requires nesprin-1 (also known as SYNE1), a protein of the nuclear envelope.
View Article and Find Full Text PDFMicrotubules are nucleated from multiprotein complexes containing γ-tubulin and associated γ-tubulin complex proteins (GCPs). Small complexes (γTuSCs) comprise two molecules of γ-tubulin bound to the C-terminal domains of GCP2 and GCP3. γTuSCs associate laterally into helical structures, providing a structural template for microtubule nucleation.
View Article and Find Full Text PDFUnlabelled: Invasion of nonphagocytic cells through rearrangement of the actin cytoskeleton is a common immune evasion mechanism used by most intracellular bacteria. However, some pathogens modulate host microtubules as well by a still poorly understood mechanism. In this study, we aim at deciphering the mechanisms by which the opportunistic bacterial pathogen Pseudomonas aeruginosa invades nonphagocytic cells, although it is considered mainly an extracellular bacterium.
View Article and Find Full Text PDFWe have identified TUBGCP4 variants in individuals with autosomal-recessive microcephaly and chorioretinopathy. Whole-exome sequencing performed on one family with two affected siblings and independently on another family with one affected child revealed compound-heterozygous mutations in TUBGCP4. Subsequent Sanger sequencing was performed on a panel of individuals from 12 French families affected by microcephaly and ophthalmic manifestations, and one other individual was identified with compound-heterozygous mutations in TUBGCP4.
View Article and Find Full Text PDFγ-Tubulin is critical for microtubule (MT) assembly and organization. In metazoa, this protein acts in multiprotein complexes called γ-Tubulin Ring Complexes (γ-TuRCs). While the subunits that constitute γ-Tubulin Small Complexes (γ-TuSCs), the core of the MT nucleation machinery, are essential, mutation of γ-TuRC-specific proteins in Drosophila causes sterility and morphological abnormalities via hitherto unidentified mechanisms.
View Article and Find Full Text PDFCentriolar satellites are small, granular structures that cluster around centrosomes, but whose biological function and regulation are poorly understood. We show that centriolar satellites undergo striking reorganization in response to cellular stresses such as UV radiation, heat shock, and transcription blocks, invoking acute and selective displacement of the factors AZI1/CEP131, PCM1, and CEP290 from this compartment triggered by activation of the stress-responsive kinase p38/MAPK14. We demonstrate that the E3 ubiquitin ligase MIB1 is a new component of centriolar satellites, which interacts with and ubiquitylates AZI1 and PCM1 and suppresses primary cilium formation.
View Article and Find Full Text PDFMicrotubules are the main constituents of mitotic spindles. They are nucleated in large amounts during spindle assembly, from multiprotein complexes containing γ-tubulin and associated γ-tubulin complex proteins (GCPs). With the aim of developing anti-cancer drugs targeting these nucleating complexes, we analyzed the interface between GCP4 and γ-tubulin proteins usually located in a multiprotein complex named γ-TuRC (γ-Tubulin Ring Complex).
View Article and Find Full Text PDFProg Mol Biol Transl Sci
December 2013
Microtubules are among the main constituents of the cytoskeleton. They are assembled from dimers of alpha- and beta-tubulin. This assembly occurs preferentially at organizing centers such as the centrosomes, catalyzed by multiprotein complexes of gamma-tubulin.
View Article and Find Full Text PDFMicrotubule nucleation is regulated by the γ-tubulin ring complex (γTuRC) and related γ-tubulin complexes, providing spatial and temporal control over the initiation of microtubule growth. Recent structural work has shed light on the mechanism of γTuRC-based microtubule nucleation, confirming the long-standing hypothesis that the γTuRC functions as a microtubule template. The first crystallographic analysis of a non-γ-tubulin γTuRC component (γ-tubulin complex protein 4 (GCP4)) has resulted in a new appreciation of the relationships among all γTuRC proteins, leading to a refined model of their organization and function.
View Article and Find Full Text PDFMethods Mol Biol
November 2011
The movement of chromosomes in mitosis requires spindle microtubules, as well as a set of specific motor proteins located at the kinetochores of the chromosomes. The exact mechanisms of chromosome movement have remained ambiguous for many years. Cumulating evidence indicates that chromosome movement in early mitosis occurs by lateral sliding of kinetochores along the surface of microtubules.
View Article and Find Full Text PDFThe protein kinase calcium/calmodulin-dependent kinase II (CaMKII) predominantly consists of the α and β isoforms in the brain. Although CaMKIIα functions have been elucidated, the isoform-specific catalytic functions of CaMKIIβ have remained unknown. Using knockdown analyses in primary rat neurons and in the rat cerebellar cortex in vivo, we report that CaMKIIβ operates at the centrosome in a CaMKIIα-independent manner to drive dendrite retraction and pruning.
View Article and Find Full Text PDFMicrotubule nucleation in all eukaryotes involves γ-tubulin small complexes (γTuSCs) that comprise two molecules of γ-tubulin bound to γ-tubulin complex proteins (GCPs) GCP2 and GCP3. In many eukaryotes, multiple γTuSCs associate with GCP4, GCP5 and GCP6 into large γ-tubulin ring complexes (γTuRCs). Recent cryo-EM studies indicate that a scaffold similar to γTuRCs is formed by lateral association of γTuSCs, with the C-terminal regions of GCP2 and GCP3 binding γ-tubulin molecules.
View Article and Find Full Text PDFTo maintain tissue architecture, epithelial cells divide in a planar fashion, perpendicular to their main polarity axis. As the centrosome resumes an apical localization in interphase, planar spindle orientation is reset at each cell cycle. We used three-dimensional live imaging of GFP-labeled centrosomes to investigate the dynamics of spindle orientation in chick neuroepithelial cells.
View Article and Find Full Text PDFBackground: In differentiating myoblasts, the microtubule network is reorganized from a centrosome-bound, radial array into parallel fibres, aligned along the long axis of the cell. Concomitantly, proteins of the centrosome relocalize from the pericentriolar material to the outer surface of the nucleus. The mechanisms that govern this relocalization are largely unknown.
View Article and Find Full Text PDFgamma-Tubulin is critical for the initiation and regulation of microtubule (MT) assembly. In Drosophila melanogaster, it acts within two main complexes: the gamma-tubulin small complex (gamma-TuSC) and the gamma-tubulin ring complex (gamma-TuRC). Proteins specific of the gamma-TuRC, although nonessential for viability, are required for efficient mitotic progression.
View Article and Find Full Text PDF