Publications by authors named "Andreas Martin Grabrucker"

Background: Preclinical and clinical studies have shown that dietary zinc deficiency can lead to symptoms similar to those observed in major depressive disorder (MDD). However, the underlying molecular mechanisms remain unclear. To investigate these mechanisms, we examined proteomic changes in the prefrontal cortex (PFC) and hippocampus (HP) of rats, two critical brain regions implicated in the pathophysiology of depression.

View Article and Find Full Text PDF

Glioblastoma Multiforme (GBM) is a devastating disease with a low survival rate and few efficacious treatment options. The fast growth, late diagnostics, and off-target toxicity of currently used drugs represent major barriers that need to be overcome to provide a viable cure. Nanomedicines (NMeds) offer a way to overcome these pitfalls by protecting and loading drugs, increasing blood half-life, and being targetable with specific ligands on their surface.

View Article and Find Full Text PDF

The essential trace metals iron, zinc, and copper have a significant physiological role in healthy brain development and function. Especially zinc is important for neurogenesis, synaptogenesis, synaptic transmission and plasticity, and neurite outgrowth. Given the key role of trace metals in many cellular processes, it is important to maintain adequate levels in the brain.

View Article and Find Full Text PDF

Restoration of the Chol homeostasis in the Central Nervous System (CNS) could be beneficial for the treatment of Huntington's Disease (HD), a progressive, fatal, adult-onset, neurodegenerative disorder. Unfortunately, Chol is unable to cross the blood-brain barrier (BBB), thus a novel strategy for a targeted delivery of Chol into the brain is highly desired. This article aims to investigate the production of hybrid nanoparticles composed by Chol and PLGA (MIX-NPs) modified with g7 ligand for BBB crossing.

View Article and Find Full Text PDF

A dyshomeostasis of zinc ions has been reported for many psychiatric and neurodegenerative disorders including schizophrenia, attention deficit hyperactivity disorder, depression, autism, Parkinson's and Alzheimer's disease. Furthermore, alterations in zinc-levels have been associated with seizures and traumatic brain injury. Thus, altering zinclevels within the brain is emerging as a new target for the prevention and treatment of psychiatric and neurological diseases.

View Article and Find Full Text PDF

Apart from teratogenic and pathological effects of zinc deficiency such as the occurrence of skin lesions, anorexia, growth retardation, depressed wound healing, altered immune function, impaired night vision, and alterations in taste and smell acuity, characteristic behavioral changes in animal models and human patients suffering from zinc deficiency have been observed. Given that it is estimated that about 17% of the worldwide population are at risk for zinc deficiency and that zinc deficiency is associated with a variety of brain disorders and disease states in humans, it is of major interest to investigate, how these behavioral changes will affect the individual and a putative course of a disease. Thus, here, we provide a state of the art overview about the behavioral phenotypes observed in various models of zinc deficiency, among them environmentally produced zinc deficient animals as well as animal models based on a genetic alteration of a particular zinc homeostasis gene.

View Article and Find Full Text PDF