Publications by authors named "Andreas Markmann"

We introduce the so-called "Classical Optimal Control Optimization" (COCO) method for global energy minimization based on the implementation of the diffeomorphic modulation under observable-response-preserving homotopy (DMORPH) gradient algorithm. A probe particle with time-dependent mass m( t;β) and dipole μ( r, t;β) is evolved classically on the potential energy surface V( r) coupled to an electric field E( t;β), as described by the time-dependent density of states represented on a grid, or otherwise as a linear combination of Gaussians generated by the k-means clustering algorithm. Control parameters β defining m( t;β), μ( r, t;β), and E( t;β) are optimized by following the gradients of the energy with respect to β, adapting them to steer the particle toward the global minimum energy configuration.

View Article and Find Full Text PDF

Understanding how to control reaction dynamics of polyatomic systems by using ultrafast laser technology is a fundamental challenge of great technological interest. Here, we report a Floquet theoretical study of the effect of light-induced potentials on the ultrafast cis-trans photoisomerization dynamics of rhodopsin. The Floquet Hamiltonian involves an empirical 3-state 25-mode model with frequencies and excited-state gradients parametrized to reproduce the rhodopsin electronic vertical excitation energy, the resonance Raman spectrum, and the photoisomerization time and efficiency as probed by ultrafast spectroscopy.

View Article and Find Full Text PDF

A rigorous method for simulations of quantum dynamics is introduced on the basis of concatenation of semiclassical thawed Gaussian propagation steps. The time-evolving state is represented as a linear superposition of closely overlapping Gaussians that evolve in time according to their characteristic equations of motion, integrated by fourth-order Runge-Kutta or velocity Verlet. The expansion coefficients of the initial superposition are updated after each semiclassical propagation period by implementing the Husimi Transform analytically in the basis of closely overlapping Gaussians.

View Article and Find Full Text PDF

We introduce a quantum optimal control algorithm for energy minimization that combines the diffeomorphic modulation under observable response preserving homotopy (D-MORPH) gradient and the Broyden Fletcher Goldfarb Shanno (BFGS) iterative scheme for nonlinear optimization. An extended set of controls defining the time-dependent mass, dipole moment, and external perturbational field are optimized to find an effective Hamiltonian that steers the dynamics of the system into the global minimum without getting trapped into local minima. The algorithm is illustrated as applied to energy minimization on rugged surfaces and golf potentials comparable to those previously explored for testing quantum annealing methodologies.

View Article and Find Full Text PDF

The wave packet molecular dynamics (WPMD) method provides a variational approximation to the solution of the time-dependent Schrödinger equation. Its application in the field of high-temperature dense plasmas has yielded diverging electron width (spreading), which results in diminishing electron-nuclear interactions. Electron spreading has previously been ascribed to a shortcoming of the WPMD method and has been counteracted by various heuristic additions to the models used.

View Article and Find Full Text PDF

An accurate and efficient algorithm for dynamics simulations of particles with attractive 1/r singular potentials is introduced. The method is applied to semiclassical dynamics simulations of electron-proton scattering processes in the Wigner-transform time-dependent picture, showing excellent agreement with full quantum dynamics calculations. Rather than avoiding the singularity problem by using a pseudopotential, the algorithm predicts the outcome of close-encounter two-body collisions for the true 1/r potential by solving the Kepler problem analytically and corrects the trajectory for multiscattering with other particles in the system by using standard numerical techniques (e.

View Article and Find Full Text PDF

This work explores the feasibility of using shaped electrostatic potentials to achieve specified final scattering distributions of an electron wave packet in a two dimensional subsurface plane of a semiconductor. When electron transport takes place in the ballistic regime, and features of the scattering potentials are smaller than the wavelength of the incident electron then coherent quantum effects can arise. Simulations employing potential forms based on analogous optical principles demonstrate the ability to manipulate quantum interferences in two dimensions.

View Article and Find Full Text PDF

We present here a detailed analysis of the mechanism of photoinduced electron and proton transfer in the planar pyrrole-pyridine hydrogen-bonded system, a model for the photochemistry of hydrogen bonds in DNA base pairs. Two different crossings, an avoided crossing and a conical intersection, are the key steps for forward and backward electron and proton transfer providing to the system photostability against UV radiation by restoring the system in its initial electronic and geometric structure.

View Article and Find Full Text PDF

We use plane wave and embedded cluster ab initio density functional calculations to study adsorption, dissociation and diffusion of the HCl molecule on the MgO(001) surface. The two methods yield comparable results for adsorption of an isolated HCl molecule and complement each other when considering charged species and coverage effects. We find dissociative chemisorption at a coverage smaller than 0.

View Article and Find Full Text PDF

We consider the vibronic coupling effects involving cationic states with degenerate components that can be represented as charge localized at either end of the short cumulene molecules allene and pentatetraene. Our aim is to simulate dynamically the charge transfer process when one component is artificially depopulated. We model the Jahn-Teller vibronic interaction within these states as well as their pseudo-Jahn-Teller coupling with some neighboring states.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiontvp5s9msn8lqdslneo5fpsdgc453jl65): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once