Optical quantum communication technologies are making the prospect of unconditionally secure and efficient information transfer a reality. The possibility of generating and reliably detecting quantum states of light, with the further need of increasing the private data-rate is where most research efforts are focusing. The physical concept of entanglement is a solution guaranteeing the highest degree of security in device-independent schemes, yet its implementation and preservation over long communication links is hard to achieve.
View Article and Find Full Text PDFIntensity modulators are fundamental components for integrated photonics. From near-infrared (NIR) to visible spectral ranges, they find applications in optical communication and quantum technologies. In particular, they are required for the control and manipulation of atomic systems such as atomic clocks and quantum computers.
View Article and Find Full Text PDFMiniaturised optical spectrometers are attractive due to their small footprint, low weight, robustness and stability even in harsh environments such as space or industrial facilities. We report on a stationary-wave integrated Fourier-transform spectrometer featuring a measured optical bandwidth of 325 nm and a theoretical spectral resolution of 1.2 nm.
View Article and Find Full Text PDFWe present a graph-based model for multiple scattering of light in integrated lithium niobate on insulator (LNOI) networks, which describes an open network of single-mode integrated waveguides with tunable scattering at the network nodes. We first validate the model at small scale with experimental LNOI resonator devices and show consistent agreement between simulated and measured spectral data. Then, the model is used to demonstrate a novel platform for on-chip multiple scattering in large-scale optical networks up to few hundred nodes, with tunable scattering behaviour and tailored disorder.
View Article and Find Full Text PDFThe generation of photon pairs from nanoscale structures with high rates is still a challenge for the integration of quantum devices, as it suffers from parasitic signals from the substrate. In this work, we report type-0 spontaneous parametric down-conversion at 1550 nm from individual bottom-up grown zinc-blende GaAs nanowires with lengths of up to 5 μm and diameters of up to 450 nm. The nanowires were deposited on a transparent ITO substrate, and we measured a background-free coincidence rate of 0.
View Article and Find Full Text PDFLithium niobate on insulator is being established as a versatile platform for a new generation of photonic integrated devices. Extensive progress has been made in recent years to improve the fabrication of integrated optical circuits from a research platform towards wafer-scale fabrication in commercial foundries, and optical losses have reached remarkably low values approaching material limits. In this context, argon etching of lithium niobate waveguides has been shown to provide the best optical quality, yet the process is still challenging to optimise due to its physical nature.
View Article and Find Full Text PDFPhase shifters are key components of large-scale photonic integrated circuits. For the lithium niobate-on-insulator (LNOI) platform, thermo-optic phase shifters (TOPS) have emerged as a more stable and compact alternative to common electro-optic phase shifters (EOPSs), which are prone to anomalous behavior and drifting at low frequencies. Here, we model and experimentally characterize the influence of geometry on the performance of metal strip TOPSs.
View Article and Find Full Text PDF