Healthy articular cartilage is characterized by extremely low friction and high compressive stiffness. This dual-functionality is tailored by its biphasic structure, whereby a fluid phase interacts with the extracellular matrix. Osteoarthritis (OA) causes structural changes, thereby altering the biomechanical and frictional properties.
View Article and Find Full Text PDFKnee Surg Sports Traumatol Arthrosc
September 2024
Purpose: The aim of this study was to investigate the influence of medial meniscus posterior root avulsion (MMPRA) before and after surgical treatment on the biomechanics of the knee joint, including suture repair forces during daily and crutch-assisted gait movements.
Methods: MMPRA were investigated in eight human cadaver knee joint specimens by a dynamic knee joint simulator with daily (normal gait, gait with additional rotational movement, standing up, sitting down) and rehabilitation-associated movements (crutch-assisted gait with limited flexion range of motion [30°] and 30% [toe-touch weight-bearing, TTWB] and 50% of body weight [partial weight-bearing, PWB]) with simulated physiologic muscle forces. Each specimen was tested in intact, torn and repaired (transtibial suture) state.
Orthopadie (Heidelb)
July 2024
The various connective tissues of the body have different functions, which result from their specific structure and composition. The identification of this structure-function relationship is of great importance for various disciplines such as medicine, biology or tissue engineering. Connective tissue consists mainly of an extracellular matrix (ECM) and a limited number of cells.
View Article and Find Full Text PDFBiomechanical characterization of meniscal tissue ex vivo remains a critical need, particularly for the development of suitable meniscus replacements or therapeutic strategies that target the native mechanical properties of the meniscus. To date, a huge variety of test configurations and protocols have been reported, making it extremely difficult to compare the respective outcome parameters, thereby leading to misinterpretation. Therefore, the purpose of this systematic review was to identify test-specific parameters that contribute to uncertainties in the determination of mechanical properties of the human meniscus and its attachments, which derived from common quasi-static and dynamic tests in tension, compression, and shear.
View Article and Find Full Text PDFMeniscal tearing can increase the contact pressure between the tibia and femur by causing gapping of torn meniscus tissue. The aim of this study was to quantify gapping behavior of radial and longitudinal tears and their impact on peak contact pressure and mean contact area. Twelve porcine knee joints underwent unicondylar, convertible osteotomy for exact tear application and consecutive suturing.
View Article and Find Full Text PDFThe association of knee joint osteoarthritis and altered frictional properties of the degenerated cartilage remains ambiguous, because previous in vitro studies did not consider the characteristic loads and velocities during gait. Therefore, the aim of this study was to quantify the friction behavior of degenerated human cartilage under characteristic stance and swing phase conditions. A dynamic pin-on-plate tribometer was used to test the tribological systems of cartilage against cartilage and cartilage against glass, both with synthetic synovial fluid as lubricant.
View Article and Find Full Text PDFKnee Surg Sports Traumatol Arthrosc
December 2023
Purpose: The purpose of this in vitro study was to investigate whether or not hyaluronic acid supplementation improves knee joint friction during osteoarthritis progression under gait-like loading conditions.
Methods: Twelve human cadaveric knee joints were equally divided into mild and moderate osteoarthritic groups. After initial conservative preparation, a passive pendulum setup was used to test the whole joints under gait-like conditions before and after hyaluronic acid supplementation.
The demand for engineered scaffolds capable of delivering multiple cues to cells continues to grow as the interplay between cell fate with microenvironmental and external cues is revealed. Emphasis has been given to develop stimuli-responsive scaffolds. These scaffolds are designed to sense an external stimulus triggering a specific response (e.
View Article and Find Full Text PDFPurpose: The purpose of this in-vitro study was to examine the kinematics of an artificial, free-floating medial meniscus replacement device under dynamic loading situations and different knee joint states.
Methods: A dynamic knee simulator was used to perform dynamic loading exercises on three neutrally aligned and three 10° valgus aligned (simulating a medial openwedge high tibial osteotomy - MOWHTO) left human cadaveric knee joints. The knee joints were tested in three states (intact, conventional notchplasty, extended notchplasty) while 11 randomised exercises were simulated (jump landing, squatting, tibial rotation and axial ground impacts at 10°, 30° and 60° knee joint flexion) to investigate the knee joint and implant kinematics by means of rigidly attached reflective marker sets and an according motion analysis.
Purpose: The purpose of this study was to investigate the potential of a doubled semitendinosus (ST) and a single gracilis tendon (GT) lateral meniscus autograft to restore the knee joint kinematics and tibiofemoral contact after total lateral meniscectomy (LMM).
Methods: Fourteen human knee joints were tested intact, after LMM and after ST and GT meniscus autograft treatment under an axial load of 200 N during full range of motion (0°-120°) and four randomised loading situations: without external moments, external rotation, valgus stress and a combination of external rotation and valgus stress using a knee joint simulator. Non-parametric statistical analyses were performed on joint kinematics and on the tibiofemoral contact mechanics.
Inadequate mechanical compliance of orthopedic implants can result in excessive strain of the bone interface, and ultimately, aseptic loosening. It is hypothesized that a fiber-based biometal with adjustable anisotropic mechanical properties can reduce interface strain, facilitate continuous remodeling, and improve implant survival under complex loads. The biometal is based on strategically layered sintered titanium fibers.
View Article and Find Full Text PDFIntroduction: Multiple camera systems are widely used for 3D-motion analysis. Due to increasing accuracies these camera systems gained interest in biomechanical research areas, where high precision measurements are desirable. In the current study different measurement systems were compared regarding their measurement accuracy.
View Article and Find Full Text PDFFront Bioeng Biotechnol
March 2022
The aim of this biomechanical study was to answer the question whether the meniscus acts as a shock absorber in the knee joint or not. The soft tissue of fourteen porcine knee joints was removed, leaving the capsuloligamentous structures intact. The joints were mounted in 45° neutral knee flexion in a previously validated droptower setup.
View Article and Find Full Text PDFBackground: Both knotted and knotless single-anchor repair techniques are used to repair transmural ruptures of the upper subscapularis (SSC) tendon. However, it is still unclear which technique provides better clinical and radiological results.
Purpose/hypothesis: To compare the clinical and magnetic resonance imaging (MRI) outcomes of knotless and knotted single-anchor repair techniques in patients with a transmural rupture of the upper SSC tendon at 2-year follow-up.
While it is generally accepted that traumatic meniscus pathologies lead to degenerative articular cartilage changes in the mid-to long-term and consecutively to post-traumatic osteoarthritis (PTOA), very little is known about how such injuries initiate tribological changes within the knee and their possible impact on PTOA acceleration. Therefore, the aim of this study was to investigate the influence of three different medial meniscus states (intact, posterior root tear, total meniscectomy) on the initial whole knee joint friction. Six ovine knee joints were tested in a passive pendulum friction testing device under an axial load of 250 N and an initial deflection of 12°, representing swing phase conditions, and under an axial load of 1000 N and an initial deflection of 5°, simulating stance phase conditions.
View Article and Find Full Text PDFMenisci transfer axial loads, while increasing the load-bearing tibiofemoral contact area and decreasing tibiofemoral contact pressure (CP). Numerous clinical and experimental studies agree that an increased CP is one predominant indicator for post-traumatic osteoarthritis (PTOA) of the knee joint. However, due to the immense variability in experimental test setups and wide range of treatment possibilities in meniscus surgery, it is difficult to objectively assess their impact on the CP determination, which is clearly crucial for knee joint health.
View Article and Find Full Text PDFBackground: Knotted and knotless single-anchor reconstruction techniques are frequently performed to reconstruct full-thickness tears of the upper portion of subscapularis tendon. However, it is unclear whether one technique is superior to the other.
Questions/purposes: (1) When comparing knotless and knotted single-anchor reconstruction techniques in full-thickness tears of the upper subscapularis tendon, is there a difference in stiffness under cyclic load? (2) Are there differences in cyclic gapping between knotless and knotted reconstructions? (3) Are there differences in the maximal stiffness, yield load, and ultimate load to failure? (4) What are the modes of failure of knotless and knotted reconstruction techniques?
Methods: Eight matched pairs of human cadaveric shoulders were dissected, and a full-thickness tear of the subscapularis tendon (Grade 3 according to the Fox and Romeo classification) was created.
Arthrosc Sports Med Rehabil
April 2021
Purpose: To investigate neuromuscular electromyographic response of the of the upper and lower leg muscles after the application of an intraoperative, isolated mechanical stimulus of the capsuloligamentous structures, including the anterior (ACL) and posterior cruciate ligaments (PCL), lateral (LM) and medial menisci (MM), plica mediopatellaris (PM), and Hoffa's fat pat (HFP).
Methods: The electromyographic response of the upper and lower leg muscles (M. rectus femoris; M.
An exact understanding of the interplay between the articulating tissues of the knee joint in relation to the osteoarthritis (OA)-related degeneration process is of considerable interest. Therefore, the aim of the present study was to characterize the biomechanical properties of mildly and severely degenerated human knee joints, including their menisci and tibial and femoral articular cartilage (AC) surfaces. A spatial biomechanical mapping of the articulating knee joint surfaces of 12 mildly and 12 severely degenerated human cadaveric knee joints was assessed using a multiaxial mechanical testing machine.
View Article and Find Full Text PDFBackground: The anatomic appearance and biomechanical and clinical importance of the anterior meniscus roots are well described. However, little is known about the loads that act on these attachment structures under physiological joint loads and movements.
Hypotheses: As compared with uniaxial loading conditions under static knee flexion angles or at very low flexion-extension speeds, more realistic continuous movement simulations in combination with physiological muscle force simulations lead to significantly higher anterior meniscus attachment forces.
Degenerative changes of menisci contribute to the evolution of osteoarthritis in the knee joint, because they alter the load transmission to the adjacent articular cartilage. Identifying alterations in the strain response of meniscal tissue under compression that are associated with progressive degeneration may uncover links between biomechanical function and meniscal degeneration. Therefore, the goal of this study was to investigate how degeneration effects the three-dimensional (3D; axial, circumferential, radial) strain in different anatomical regions of human menisci (anterior and posterior root attachment; anterior and posterior horn; pars intermedia) under simulated compression.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) has proved to be an invaluable component of pathogenesis research in osteoarthritis. Nevertheless, the detection of a meniscal lesion from magnetic resonance (MR) images is always challenging for both clinicians and researchers, because the surrounding tissues lead to similar signals within MR measurements, thus being difficult to discriminate. Moreover, the size and shape of osteoarthritic and non-osteoarthritic menisci vary to a large extent between individuals of same features, e.
View Article and Find Full Text PDF