Publications by authors named "Andreas Lux"

The homodimeric transmembrane receptor endoglin (CD105) plays an important role in angiogenesis. This is highlighted by mutations in its gene, causing the vascular disorder HHT1. The main role of endoglin function has been assigned to the modulation of transforming growth factor β and bone morphogenetic protein signalling in endothelial cells.

View Article and Find Full Text PDF

Background: The vascular disorder Hereditary Hemorrhagic Telangiectasia (HHT) is in general an inherited disease caused by mutations in the TGF-β/BMP receptors endoglin or ALK1 or in rare cases by mutations of the TGF-β signal transducer protein Smad4 leading to the combined syndrome of juvenile polyposis and HHT. HHT is characterized by several clinical symptoms like spontaneous and recurrent epistaxis, multiple telangiectases at sites like lips, oral cavity, fingers, nose, and visceral lesions like gastrointestinal telangiectasia, pulmonary, hepatic, cerebral or spinal arteriovenous malformations. The disease shows an inter- and intra-family variability in penetrance as well as symptoms from mild to life threatening.

View Article and Find Full Text PDF

The non-pathogenic Gram-positive soil bacterium Streptomyces davawensis synthesizes the riboflavin (vitamin B(2)) analogs roseoflavin (RoF) and 8-demethyl-8-amino-riboflavin (AF). Both compounds are antibiotics. Notably, a number of other riboflavin analogs are currently under investigation with regard to the development of novel antiinfectives.

View Article and Find Full Text PDF

Juvenile polyposis (JP) and hereditary hemorrhagic telangiectasia (HHT) are clinically distinct diseases caused by mutations in SMAD4 and BMPR1A (for JP) and endoglin and ALK1 (for HHT). Recently, a combined syndrome of JP-HHT was described that is also caused by mutations in SMAD4. Although both JP and JP-HHT are caused by SMAD4 mutations, a possible genotype:phenotype correlation was noted as all of the SMAD4 mutations in the JP-HHT patients were clustered in the COOH-terminal MH2 domain of the protein.

View Article and Find Full Text PDF

The paternally expressed gene PEG10 is a retrotransposon derived gene adapted through mammalian evolution located on human chromosome 7q21. PEG10 codes for at least two proteins, PEG10-RF1 and PEG10-RF1/2, by -1 frameshift translation. Overexpression or reinduced PEG10 expression was seen in malignancies, like hepatocellular carcinoma or B-cell acute and chronic lymphocytic leukemia.

View Article and Find Full Text PDF

Endoglin is a membrane-inserted protein that is preferentially synthesized in angiogenic vascular endothelial and smooth muscle cells. Endoglin associates with members of the transforming growth factor-beta (TGF-beta) receptor family and has been identified as the gene involved in hereditary hemorrhagic telangiectasia. Although endoglin is known to affect cell responses to TGF-beta, its mode of action is largely unknown.

View Article and Find Full Text PDF

Determination of the functional relationship between the transforming growth factor-beta (TGFbeta) receptor proteins endoglin and ALK1 is essential to the understanding of the human vascular disease, hereditary hemorrhagic telangiectasia. TGFbeta1 caused recruitment of ALK1 into a complex with endoglin in human umbilical vein endothelial cells (HUVECs). Therefore, we examined TGFbeta receptor-dependent phosphorylation of endoglin by the constitutively active forms of the TGFbeta type I receptors ALK1, ALK5, and the TGFbeta type II receptor, TbetaRII.

View Article and Find Full Text PDF

Background: TGF-beta1 is an important angiogenic factor involved in the different aspects of angiogenesis and vessel maintenance. TGF-beta signalling is mediated by the TbetaRII/ALK5 receptor complex activating the Smad2/Smad3 pathway. In endothelial cells TGF-beta utilizes a second type I receptor, ALK1, activating the Smad1/Smad5 pathway.

View Article and Find Full Text PDF

Background And Objectives: Hereditary hemorrhagic telangiectasia (HHT), an inherited vascular dysplasia, is caused by mutations in endoglin or activin receptor-like kinase (ALK)-1. Haploinsufficiency for these genes is thought to result in an imbalanced angiogenic activity. The aim of this study was to evaluate the plasma levels and the expression profiles of angiogenic and angiogenesis-related factors in the context of HHT.

View Article and Find Full Text PDF

Morbus Osler or HHT (hereditary hemorrhagic telangiectasia) is a disorder of the fibrovascular tissue that is inherited in an autosomal dominant way with frequency rates between 1:2,500 and 1:40,000. The disease provokes malformations of the blood vessels sometimes resulting in life-threatening complications. Presently, two genes involved in the development of HHT have been identified: ACVRL1 and ENG.

View Article and Find Full Text PDF

Mutations in activin receptor-like kinase 1 (ALK1), a transforming growth factor (TGF)-beta type I receptor, lead to the vascular disorder hereditary hemorrhagic telangiectasia caused by abnormal vascular remodeling. The underlying molecular cause of this disease is not well understood. Identifying binding partners for ALK1 will help to understand its cellular function.

View Article and Find Full Text PDF

A new (electronic) health insurance card for Germans could eliminate errors in documenting exemption from charges. Electronic prescribing, if introduced nationally, would lead to improved medication-related information and the availability of structural and control data. An analytical model for Germany has shown that DM1 billion would be saved from improved prescription information simply in terms of the number of avoided hospital stays now paid for by the health-care system.

View Article and Find Full Text PDF