Light regulates physiology, mood, and behavior through signals sent to the brain by intrinsically photosensitive retinal ganglion cells (ipRGCs). How primate ipRGCs sense light is unclear, as they are rare and challenging to target for electrophysiological recording. We developed a method of acute identification within the live, ex vivo retina.
View Article and Find Full Text PDFThe fovea is a neural specialization that endows humans and other primates with the sharpest vision among mammals. This performance originates in the foveal cones, which are extremely narrow and long to form a high-resolution pixel array. Puzzlingly, this form is predicted to impede electrical conduction to an extent that appears incompatible with vision.
View Article and Find Full Text PDFNumerous brain structures have a cerebellum-like architecture in which inputs diverge onto a large number of granule cells that converge onto principal cells. Plasticity at granule cell-to-principal cell synapses is thought to allow these structures to associate spatially distributed patterns of granule cell activity with appropriate principal cell responses. Storing large sets of associations requires the patterns involved to be normalized, i.
View Article and Find Full Text PDF