Recent theoretical studies are reviewed which show that the naked group 14 atoms E = C-Pb in the singlet (1)D state behave as bidentate Lewis acids that strongly bind two σ donor ligands L in the donor-acceptor complexes L→E←L. Tetrylones EL2 are divalent E(0) compounds which possess two lone pairs at E. The unique electronic structure of tetrylones (carbones, silylones, germylones, stannylones, plumbylones) clearly distinguishes them from tetrylenes ER2 (carbenes, silylenes, germylenes, stannylenes, plumbylenes) which have electron-sharing bonds R-E-R and only one lone pair at atom E.
View Article and Find Full Text PDFEight deoxynucleoside triphosphates (dNTPs) and nucleoside triphosphates (NTPs): ATP, CTP, GTP, UTP, dATP, dCTP, dGTP and dTTP, were separated with two 15 cm ZIC-pHILIC columns coupled in series, using LC-UV instrumentation. The polymer-based ZIC-pHILIC column gave significantly better separations and peak shape than a silica-based ZIC-HILIC column. Better separations were obtained with isocratic elution as compared to gradient elution.
View Article and Find Full Text PDFThe bonding situation of homonuclear and heteronuclear metal-metal multiple bonds in R(3)M-M'R(3) (M, M' = Cr, Mo, W; R = Cl, NMe(2)) is investigated by density functional theory (DFT) calculations, with the help of energy decomposition analysis (EDA). The M-M' bond strength increases as M and M' become heavier. The strongest bond is predicted for the 5d-5d tungsten complexes (NMe(2))(3)W-W(NMe(2))(3) (D(e) = 103.
View Article and Find Full Text PDFAn efficient, linear-scaling implementation of Kohn-Sham density-functional theory for the calculation of molecular forces for systems containing hundreds of atoms is presented. The density-fitted Coulomb force contribution is calculated in linear time by combining atomic integral screening with the continuous fast multipole method. For higher efficiency and greater simplicity, the near-field Coulomb force contribution is calculated by expanding the solid-harmonic Gaussian basis functions in Hermite rather than Cartesian Gaussians.
View Article and Find Full Text PDFA toxic plant, Veratrum album (ssp. viriscens), was found to have an inhibitory effect on Hedgehog (Hh), a developmental signaling pathway that has been shown to be active during development, in adult stem cells and in numerous human tumors. Based on earlier studies it was believed that the known Hh inhibitor cyclopamine was present in V.
View Article and Find Full Text PDFWhen Cp*Rh(C(2)H(4))(2)H(+) (2) is exposed to C(2)H(4) in the gas phase, inside the cell of an FT-ICR mass spectrometer, the most notable feature is the lack of any bimolecular reactivity. Collisional activation of 2 leads to ethylene loss and formation of Cp*Rh(C(2)H(4)-mu-H)(+) (3). In contrast to the reactivity of 2 in solution, ethylene dimerisation is negligible in the gas phase.
View Article and Find Full Text PDFJ Pharm Biomed Anal
September 2010
The effect of acid treatment of cyclopamine, a natural antagonist of the hedgehog (Hh) signaling pathway and a potential anti-cancer drug, has been studied. Previous reports have shown that under acidic conditions, as in the stomach, cyclopamine is less effective. Also, it has been stated that cyclopamine converts to veratramine, which has side effects such as hemolysis.
View Article and Find Full Text PDFQuantum chemical calculations at DFT (BP86) and ab initio levels (CCSD(T)) have been carried out for transition metal carbon complexes [MX2(PR3)2(C)] with various combinations of M = Fe, Ru, Os, X = F, Cl, Br, I, and R = H, Me, Ph, Cyc. Calculations have also been performed for [RuCl2(PMe3)(NHC)(C)] and [RuCl2(NHC)2(C)] where NHC = N-heterocyclic carbene and for [M(Por)(C)] (M = Fe, Ru, Os; Por = porphyrin). The properties of the carbon complexes as donor ligands were studied by calculating the geometries and bond dissociation energies of the Lewis acid-base adducts with the Lewis acids M(CO)5 (M = Cr, Mo, W), PdCl2SMe2, BH3, BCl3, and Fe2(CO)8.
View Article and Find Full Text PDFIn the present paper we discuss and compare two different energy decomposition schemes: Mayer's Hartree-Fock energy decomposition into diatomic and monoatomic contributions [Chem. Phys. Lett.
View Article and Find Full Text PDFDensity fitting is an important method for speeding up quantum-chemical calculations. Linear-scaling developments in Hartree-Fock and density-functional theories have highlighted the need for linear-scaling density-fitting schemes. In this paper, we present a robust variational density-fitting scheme that allows for solving the fitting equations in local metrics instead of the traditional Coulomb metric, as required for linear scaling.
View Article and Find Full Text PDFThe electronic interaction between confined pairs of He atoms in the C(20)H(20) dodecahedrane cage is analyzed. The He-He distance is only 1.265 A, a separation that is less than half the He-He distance in the free He dimer.
View Article and Find Full Text PDFThe electronic structures and bonding patterns for a new class of radical cations, [HnE-H-H-EHn]+ (EHn=element hydride, E=element of Groups 15-18), have been investigated by applying quantum-chemical methods. All structures investigated give rise to symmetric potential energy minimum structures. We envisage clear periodic trends.
View Article and Find Full Text PDFQuantum-chemical calculations using DFT (BP86) and ab initio methods (MP2, SCS-MP2) have been carried out for the endohedral fullerenes Ng2@C60 (Ng=He-Xe). The nature of the interactions has been analyzed with charge- and energy-partitioning methods and with the topological analysis of the electron density (Atoms-in-Molecules (AIM)). The calculations predict that the equilibrium geometries of Ng2@C60 have D3d symmetry when Ng=Ne, Ar, Kr, while the energy-minimum structure of Xe2@C60 has D5d symmetry.
View Article and Find Full Text PDFThe equilibrium geometries and bond dissociation energies of 16VE and 18VE complexes of ruthenium and iron with a naked carbon ligand are reported using density functional theory at the BP86/TZ2P level. Bond energies were also calculated at CCSD(T) using TZ2P quality basis sets. The calculations of [Cl2(PMe3)2Ru(C)] (1Ru), [Cl2(PMe3)2Fe(C)] (1Fe), [(CO)2(PMe3)2Ru(C)] (2Ru), [(CO)2(PMe3)2Fe(C)] (2Fe), [(CO)4Ru(C)] (3Ru), and [(CO)4Fe(C)] (3Fe) show that 1Ru has a very strong Ru-C bond which is stronger than the Fe-C bond in 1Fe.
View Article and Find Full Text PDFGeometries and bond dissociation energies of the ylide compounds H2CPH3, H2CPMe3, H2CPF3, (BH2)2CPH3, H2CNH3, H2CAsH3, H2SiPH3, and (BH2)2SiPH3 have been calculated using ab initio (MP2, CBS-QB3) and DFT (B3LYP, BP86) methods. The nature of the ylidic bond R2E1-E2X3 was investigated with an energy decomposition analysis and with the domain-averaged Fermi hole (DAFH) analysis. The results of the latter method indicate that the peculiar features of the ylidic bond can be understood in terms of donor-acceptor interactions between closed-shell R2E1 and E2X3 fragments.
View Article and Find Full Text PDFThe appearance and the significance of heuristically developed bonding models are compared with the phenomenon of unicorns in mythical saga. It is argued that classical bonding models played an essential role for the development of the chemical science providing the language which is spoken in the territory of chemistry. The advent and the further development of quantum chemistry demands some restrictions and boundary conditions for classical chemical bonding models, which will continue to be integral parts of chemistry.
View Article and Find Full Text PDFThe chemical bonds in the diatomic molecules Li(2)-F(2) and Na(2)-Cl(2) at different bond lengths have been analyzed by the energy decomposition analysis (EDA) method using DFT calculations at the BP86/TZ2P level. The interatomic interactions are discussed in terms of quasiclassical electrostatic interactions DeltaE(elstat), Pauli repulsion DeltaE(Pauli) and attractive orbital interactions DeltaE(orb). The energy terms are compared with the orbital overlaps at different interatomic distances.
View Article and Find Full Text PDFThis paper discusses recent progress that has been made in the understanding of the electronic structure and bonding situation of carbon monoxide which was analyzed using modern quantum chemical methods. The new results are compared with standard models of chemical bonding. The electronic charge distribution and the dipole moment, the nature of the HOMO and the bond dissociation energy are discussed in detail.
View Article and Find Full Text PDFDFT calculations at BP86/QZ4P have been carried out for different structures of E(2)H(2) (E = C, Si, Ge, Sn, Pb) with the goal to explain the unusual equilibrium geometries of the heavier group 14 homologues where E = Si-Pb. The global energy minima of the latter molecules have a nonplanar doubly bridged structure A followed by the singly bridged planar form B, the vinylidene-type structure C, and the trans-bent isomer D1. The energetically high-lying trans-bent structure D2 possessing an electron sextet at E and the linear form HEEH, which are not minima on the PES, have also been studied.
View Article and Find Full Text PDF