Monolayers of transition metal dichalcogenides (TMDCs) are direct-gap semiconductors with strong light-matter interactions featuring tightly bound excitons, while plasmonic crystals (PCs), consisting of metal nanoparticles that act as meta-atoms, exhibit collective plasmon modes and allow one to tailor electric fields on the nanoscale. Recent experiments show that TMDC-PC hybrids can reach the strong-coupling limit between excitons and plasmons, forming new quasiparticles, so-called plexcitons. To describe this coupling theoretically, we develop a self-consistent Maxwell-Bloch theory for TMDC-PC hybrid structures, which allows us to compute the scattered light in the near- and far-fields explicitly and provide guidance for experimental studies.
View Article and Find Full Text PDFVertical heterostructures of transition metal dichalcogenides (TMDs) host interlayer excitons with electrons and holes residing in different layers. With respect to their intralayer counterparts, interlayer excitons feature longer lifetimes and diffusion lengths, paving the way for room temperature excitonic optoelectronic devices. The interlayer exciton formation process and its underlying physical mechanisms are largely unexplored.
View Article and Find Full Text PDFThe interplay of the nonequivalent corners in the Brillouin zone of transition metal dichalcogenides (TMDCs) has been investigated extensively. While experimental and theoretical works contributed to a detailed understanding of the relaxation of selective optical excitations and the related relaxation rates, only limited microscopic descriptions of stationary experiments are available so far. Here we present microscopic calculations for the nonequilibrium steady state properties of excitons during continuous wave pumping exemplary for monolayer MoSe_{2}.
View Article and Find Full Text PDFAtomically thin layered van der Waals heterostructures feature exotic and emergent optoelectronic properties. With growing interest in these novel quantum materials, the microscopic understanding of fundamental interfacial coupling mechanisms is of capital importance. Here, using multidimensional photoemission spectroscopy, we provide a layer- and momentum-resolved view on ultrafast interlayer electron and energy transfer in a monolayer-WSe/graphene heterostructure.
View Article and Find Full Text PDFWe report on the spatial coherence of interlayer exciton ensembles as formed in MoSe_{2}/WSe_{2} heterostructures and characterized by point-inversion Michelson-Morley interferometry. Below 10 K, the measured spatial coherence length of the interlayer excitons reaches values equivalent to the lateral expansion of the exciton ensembles. In this regime, the light emission of the excitons turns out to be homogeneously broadened in energy with a high temporal coherence.
View Article and Find Full Text PDFDynamics of optically excited plasmonic nanoparticles are presently understood as a series of scattering events involving the initiation of nanoparticle breathing oscillations. According to established models, these are caused by statistical heat transfer from thermalized electrons to the lattice. An additional contribution by hot-electron pressure accounts for phase mismatches between theory and experimental observations.
View Article and Find Full Text PDFBackground And Purpose: First-generation soluble guanylate cyclase (sGC) stimulators have shown clinical benefit in pulmonary hypertension (riociguat) and chronic heart failure (vericiguat). However, given the broad therapeutic opportunities for sGC stimulators, tailored molecules for distinct indications are required.
Experimental Approach: We report the high-throughput screening (HTS)-based discovery of a second generation of sGC stimulators from a novel imidazo[1,2-a]pyridine lead series.
We provide a microscopic approach to describe the onset of radial oscillation of a silver nanoparticle. Using the Heisenberg equation of motion framework, we find that the coupled ultrafast dynamics of coherently excited electron occupation and the coherent phonon amplitude initiate periodic size oscillations of the nanoparticle. Compared to the established interpretation of experiments, our results show a more direct coupling mechanism between the field intensity and coherent phonons.
View Article and Find Full Text PDFModification of electromagnetic quantum fluctuations in the form of quadrature squeezing is a central quantum resource, which can be generated from nonlinear optical processes. Such a process is facilitated by coherent two-photon excitation of the strongly bound biexciton in atomically thin semiconductors. We show theoretically that interfacing an atomically thin semiconductor with an optical cavity makes it possible to harness this two-photon resonance and use the biexcitonic parametric gain to generate squeezed light with input power an order of magnitude below current state-of-the-art devices with conventional third-order nonlinear materials that rely on far off-resonant nonlinearities.
View Article and Find Full Text PDFIn single-layer (1L) transition metal dichalcogenides, the reduced Coulomb screening results in strongly bound excitons which dominate the linear and the nonlinear optical response. Despite the large number of studies, a clear understanding on how many-body and Coulomb correlation effects affect the excitonic resonances on a femtosecond time scale is still lacking. Here, we use ultrashort laser pulses to measure the transient optical response of 1L-WS.
View Article and Find Full Text PDFBat communities can usually only be comprehensively monitored by combining ultrasound recording and trapping techniques. Here, we propose bat point counts, a novel, single method to sample all flying bats. We designed a sampling rig that combines a thermal scope to detect flying bats and their flight patterns, an ultrasound recorder to identify echolocating bat calls, and a near-infrared camera and LED illuminator to photograph bat morphology.
View Article and Find Full Text PDFWhile valleys (energy extrema) are present in all band structures of solids, their preeminent role in determining exciton resonances and dynamics in atomically thin transition metal dichalcogenides (TMDC) is unique. Using two-dimensional coherent electronic spectroscopy, we find that exciton decoherence occurs on a much faster timescale in MoSe_{2} bilayers than that in the monolayers. We further identify two population relaxation channels in the bilayer, a coherent and an incoherent one.
View Article and Find Full Text PDFWe demonstrate a fundamental breakdown of the photonic spontaneous emission (SE) formula derived from Fermi's golden rule, in absorptive and amplifying media, where one assumes the SE rate scales with the local photon density of states, an approach often used in more complex, semiclassical nanophotonics simulations. Using a rigorous quantization of the macroscopic Maxwell equations in the presence of arbitrary linear media, we derive a corrected Fermi's golden rule and master equation for a quantum two-level system (TLS) that yields a quantum pumping term and a modified decay rate that is net positive. We show rigorous numerical results of the temporal dynamics of the TLS for an example of two coupled microdisk resonators, forming a gain-loss medium, and demonstrate the clear failure of the commonly adopted formulas based solely on the local density of states.
View Article and Find Full Text PDFRegulatory efforts to introduce effective intramodal competition to the rail sector, in particular to the long-distance intercity market segment, have so far achieved only very limited success in most countries. Germany is a case in point. Even 25 years after the fundamental 1994 'rail structure reform', which eliminated the legal network monopoly of the former Deutsche Bundesbahn (DB), the combined market share of all competitors for long-distance passenger services remains stuck at "significantly below one per cent" (Bundesnetzagentur 2018, 22).
View Article and Find Full Text PDFHerein we describe the discovery, mode of action, and preclinical characterization of the soluble guanylate cyclase (sGC) activator runcaciguat. The sGC enzyme, via the formation of cyclic guanosine monophoshphate, is a key regulator of body and tissue homeostasis. sGC activators with their unique mode of action are activating the oxidized and heme-free and therefore NO-unresponsive form of sGC, which is formed under oxidative stress.
View Article and Find Full Text PDFvan der Waals heterostructures composed of transition metal dichalcogenide monolayers (TMDCs) are characterized by their truly rich excitonic properties which are determined by their structural, geometric, and electronic properties: In contrast to pure monolayers, electrons and holes can be hosted in different materials, resulting in highly tunable dipolar many-particle complexes. However, for genuine spatially indirect excitons, the dipolar nature is usually accompanied by a notable quenching of the exciton oscillator strength. Via electric and magnetic field dependent measurements, we demonstrate that a slightly biased pristine bilayer MoS_{2} hosts strongly dipolar excitons, which preserve a strong oscillator strength.
View Article and Find Full Text PDFThis paper presents an efficient algorithm for the time evolution of open quantum many-body systems using matrix-product states (MPS) proposing a convenient structure of the MPS-architecture, which exploits the initial state of system and reservoir. By doing so, numerically expensive re-ordering protocols are circumvented. It is applicable to systems with a Markovian type of interaction, where only the present state of the reservoir needs to be taken into account.
View Article and Find Full Text PDFThe equilibrium and non-equilibrium optical properties of single-layer transition metal dichalcogenides (TMDs) are determined by strongly bound excitons. Exciton relaxation dynamics in TMDs have been extensively studied by time-domain optical spectroscopies. However, the formation dynamics of excitons following non-resonant photoexcitation of free electron-hole pairs have been challenging to directly probe because of their inherently fast timescales.
View Article and Find Full Text PDFThis erratum corrects the acronym 'ISW' as 'infinite square well'.
View Article and Find Full Text PDFEnhanced Coulomb interactions in monolayer transition metal dichalcogenides cause tightly bound electron-hole pairs (excitons) that dominate their linear and nonlinear optical response. The latter includes bleaching, energy renormalizations, and higher-order Coulomb correlation effects like biexcitons and excitation-induced dephasing. While the first three are extensively studied, no theoretical footing for excitation-induced dephasing in exciton-dominated semiconductors is available so far.
View Article and Find Full Text PDFWe study the near-field energy transfer rates between two finite size quantum dot disks, generalizing the result of Förster coupling between two point dipoles. In particular, we derive analytical results for the envelope of the electronic wave function for model potentials at the boundaries of quantum dot disks and demonstrate how the Förster interaction is screened as the size of the dots becomes comparable to the dot-dot separation.
View Article and Find Full Text PDFThe photoluminescence (PL) spectrum of transition-metal dichalcogenides (TMDs) shows a multitude of emission peaks below the bright exciton line, and not all of them have been explained yet. Here, we study the emission traces of phonon-assisted recombinations of indirect excitons. To this end, we develop a microscopic theory describing simultaneous exciton, phonon, and photon interaction and including consistent many-particle dephasing.
View Article and Find Full Text PDFWe introduce a second quantization scheme based on quasinormal modes, which are the dissipative modes of leaky optical cavities and plasmonic resonators with complex eigenfrequencies. The theory enables the construction of multiplasmon or multiphoton Fock states for arbitrary three-dimensional dissipative resonators and gives a solid understanding to the limits of phenomenological dissipative Jaynes-Cummings models. In the general case, we show how different quasinormal modes interfere through an off-diagonal mode coupling and demonstrate how these results affect cavity-modified spontaneous emission.
View Article and Find Full Text PDFPassive acoustic monitoring of wildlife requires sound recording systems. Several cheap, high-performance, or open-source solutions currently exist for recording soundscapes, but all rely on commercial microphones. Commercial microphones are relatively expensive, specialized for particular taxa, and often have incomplete technical specifications.
View Article and Find Full Text PDF