Publications by authors named "Andreas Kilbinger"

Article Synopsis
  • Thiol-functionalized polymers are important due to their unique chemical properties and various applications, prompting research into their synthesis.
  • The study details an easy method for creating thiol-end-functionalized polymers using ring-opening metathesis polymerization (ROMP) and catalytic mechanisms with chain transfer agents.
  • Characterization techniques confirmed the successful synthesis and presence of thiol groups, potentially impacting materials science and biochemistry positively by using less ruthenium in the process.
View Article and Find Full Text PDF

-selective ring-opening metathesis polymerization (ROMP) with the commercial Grubbs "nitrato catalyst" has shown promise for synthesizing stereoregular materials, but it comes with the drawback of losing control over the molecular weight due to the poor initiation rate of the catalyst and the need for stoichiometric ruthenium complex loading. To address these issues, we developed a chain transfer polymerization method that allows for the catalytic synthesis of polymers while controlling the degree of polymerization. This allowed us to produce shorter polymers with exceptional chain-end control.

View Article and Find Full Text PDF

Most metathesis polymers based on norbornene derivatives carry a vinyl end group. Here we show that these vinyl end groups readily undergo a degenerative exchange of the terminal methylene unit in the presence of sub-stoichiometric amounts of a propagating metathesis polymer carrying a Grubbs ruthenium complex. We show that this degenerative exchange can be exploited in synthesizing ROMP polymers in a catalytic living fashion.

View Article and Find Full Text PDF

A series of synthetic alternating and amphiphilic aromatic amide polymers were synthesized by a step growth polymerization. Alternating - and -linkages were introduced to force the polymer chain into a helical shape in the highly polar solvent water. The polymers were analyzed by H NMR spectroscopy and SEC in polar aprotic solvents such as DMSO and DMF.

View Article and Find Full Text PDF

Star polymers have attracted considerable attention over the past few years due to their distinctive physical and chemical attributes that are different from conventional linear polymers. Here, we present a one-pot synthesis of narrowly dispersed and degradable homoarm and miktoarm star polymers exploiting the catalytic living ring-opening metathesis polymerization (ROMP) mechanism. Several complex polymeric architectures (such as A-, A-, A-, AB-, AB-, and AB-type star polymers) were synthesized quite straightforwardly by using appropriate vinyl ether chain transfer agents.

View Article and Find Full Text PDF

A new heterocyclic monomer is developed via simple Diels-Alder reaction which is reluctant to polymerize in dichloromethane (DCM) whereas undergoes facile polymerization in tetrahydrofuran with excellent control over molecular weight (M ) and dispersities (Đ) using Grubbs' third generation catalyst (G3). The deprotection of the tert-butoxycarbonyl group from the polymeric backbone yielded a water-soluble ring opening metathesis polymerization (ROMP) polymer easily. Moreover, in DCM this new monomer copolymerizes with 2,3-dihydrofuran under catalytic living ROMP conditions to give backbone degradable polymers.

View Article and Find Full Text PDF

Vinyl ether based macro-chain transfer agents (m-CTAs) are used to produce different di or tri-block copolymers under catalytic living ROMP conditions. Polystyrene (PS) vinyl ether m-CTA and polycaprolactone (PCL) or polylactide vinyl ether (PLA) m-CTAs are synthesized straightforwardly ATRP and ROP respectively. Regioselectivity as well as the high metathesis activity of these m-CTAs enabled us to synthesise a range of metathesis-based A-B diblock copolymers with controlled dispersities ( < 1.

View Article and Find Full Text PDF

Norbornene derivatives are typical monomers for ring-opening metathesis polymerization (ROMP) for synthesizing highly functional polymers. However, the lack of catalytic methods, that is, the lack of readily available chain transfer agents (CTAs) for these monomers has been a significant cost limitation when large-scale syntheses are required. Here, we report commercially available styrene and its derivatives as efficient regioselective CTAs for the catalytic synthesis of metathesis polymers requiring up to 1000 times less ruthenium than in classical ROMP experiments.

View Article and Find Full Text PDF

A monosubstituted 1,3-diene derivative attached to a polymer is demonstrated to act as a macrochain transfer agent in catalytic ring-opening metathesis polymerization. PEG- and PLA-based macrochain transfer agents were synthesized in a few steps and were characterized using NMR spectroscopy, size exclusion chromatography (SEC) and matrix-assisted laser desorption/ionization-time-of-flight (MALDI-ToF) mass spectrometry. Poly(l-lactide) based diblock copolymer, poly(ethylene glycol)-based diblock, and triblock (ABA type) copolymers of varied chain lengths were prepared catalytically in a one-pot approach via metathesis polymerization.

View Article and Find Full Text PDF

A catalytic living ring-opening metathesis copolymerization (ROMP) method is described that relies on a degenerative, reversible and regioselective exchange of propagating Fischer-carbenes. All characteristics of a living polymerization such as narrow dispersity, excellent molar mass control and the ability to form block copolymers are achieved by this method. The method allows the use of up to 200 times less ruthenium complex than traditional living ROMP.

View Article and Find Full Text PDF

Here, we present a detailed study of the metathesis activity of conjugated 1,3 diene derivatives in ring opening metathesis polymerization (ROMP) using Grubbs' 3rd generation catalyst (G3). A comprehensive screening of those derivatives revealed that monosubstituted 1,3 dienes show similar reactivities towards G3-alkylidenes as norbornene derivatives. Therefore, they represent perfect candidates for chain transfer agents in a kinetically controlled catalytic ROMP.

View Article and Find Full Text PDF

Terminal alkynes display high reactivity toward Ru-carbene metathesis catalysts. However, the formation of a less reactive bulky carbene hinders their homopolymerization. Simultaneously, the higher reactivity of alkynes does not allow efficient cross propagation with sterically less-hindered cycloalkene monomers, resulting in inefficient copolymerization.

View Article and Find Full Text PDF

Heterotelechelic polymers are an important class of materials finding applications in bioconjugation, imaging, sensing, and synthesis of organic/inorganic hybrid systems with interesting features. However, the synthesis of such polymers is challenging. Here, we report a mechanistically unique and most efficient method based on a single functionalization agent to prepare heterotelechelic polymers by a ring-opening metathesis polymerization.

View Article and Find Full Text PDF

Regioselective chain transfer agents are used to synthesize narrowly dispersed heterotelechelic polymers with a 15-fold decrease in catalyst consumption using the pulsed addition ROMP (PA-ROMP) technique. The commercially available Grubbs' third-generation catalyst (G3) is easily prefunctionalized with chain transfer agents in a short reaction time (30 min). After addition and consumption of a monomer, the excess chain transfer agent in the reaction medium end-functionalizes the polymer chain and regenerates the initiator very quickly (within 10 min) via a ring-opening-ring-closing sequence.

View Article and Find Full Text PDF

Single chain transfer agents are used to synthesize narrowly distributed heterotelechelic ROMP polymers in one pot, exploiting a new mechanistic and synthetic approach. The chain transfer agents carrying different functional groups are synthesized in a few straightforward steps. Prefunctionalization of commercially available Grubbs' third-generation catalyst is realized in situ using regioselective chain transfer agents within a short reaction period.

View Article and Find Full Text PDF

Polycondensation polymers typically follow step-growth kinetics assuming all functional groups are equally likely to react with one another. If the reaction rates with the chain end can be selectively accelerated, living polymers can be obtained. Here we report on two chlorophosphonium iodide reagents that have been synthesized from triphenylphosphine and tri(o-methoxyphenyl)phosphine.

View Article and Find Full Text PDF

Higher ring-opening metathesis propagation rates of -norbornene derivatives over derivatives are well established in the literature. Here, we report for the first time that -isomers of oxanorbornene derivatives show higher reactivity towards ring-opening metathesis with Grubbs' 3rd generation catalyst () than the corresponding -isomers. A very high selectivity for the reaction of with over the -isomers could be shown.

View Article and Find Full Text PDF

Norbornene is polymerized extremely fast when reacted with Grubbs' first () or third generation catalyst () because of its very high ring strain energy. Cyclohexene, on the other hand, cannot be polymerized using or due to its very low ring strain energy. Subsequently, the sequence-selective polymerization of these two monomers is extremely challenging.

View Article and Find Full Text PDF

Using a one-step synthetic route for block copolymers avoids the repeated addition of monomers to the polymerization mixture, which can easily lead to contamination and, therefore, to the unwanted termination of chain growth. For this purpose, monomers (M1-M5) with different steric hindrances and different propagation rates are explored. Copolymerization of M1 (propagating rapidly) with M2 (propagating slowly), M1 with M3 (propagating extremely slowly) and M4 (propagating rapidly) with M5 (propagating slowly) yielded diblock-like copolymers using Grubbs' first (G1) or third generation catalyst (G3).

View Article and Find Full Text PDF

We describe a protocol to synthesize alternating telechelic ROMP copolymers of 7-oxa-norbornene derivatives and cycloalkenes under catalytic conditions. These copolymers were synthesized using Grubbs' second-generation catalyst. The sterically less hindered backbone double bonds of the resulting alternating copolymers facilitate the chain transfer (secondary metathesis) reactions.

View Article and Find Full Text PDF

Self-assembly has proven to be a powerful tool for functional, smart materials such as hydrogels derived from low molecular weight compounds. However, the targeted design of functional gelators remains difficult. Here, we present a set of four Y-shaped aromatic amide tetramers with varying functionalities able to undergo different non-covalent interactions.

View Article and Find Full Text PDF

A recently developed catalytic living ring opening metathesis polymerisation (ROMP) was investigated using a series of reversible chain transfer agents (CTA) carrying either cyclopentene or cyclohexene rings, differing only in ring strain. All cyclopentene derivatives examined showed significantly faster reaction rates than the corresponding cyclohexene derivatives. This resulted in lower molecular weight dispersities and better control of the molecular weight for the cyclopentene compared to the cyclohexene CTAs.

View Article and Find Full Text PDF

In a conventional living ring-opening metathesis polymerization (ROMP), an equal number of ruthenium complexes to the number of polymer chains synthesized are required. This can lead to high loadings of ruthenium complexes when aiming for shorter polymers. Here, a reversible chain-transfer agent was used to produce living ROMP polymers from norbornene derivatives using catalytic amounts of Grubbs' ruthenium complexes.

View Article and Find Full Text PDF

Besides conducting excellent fundamental research in domains of strategic importance, the National Centers of Competence in Research (NCCRs) also aim to become centers of reference for education, equal opportunities, and knowledge and technology transfer. These activities are supported by a communication strategy focused on specific target groups. This article describes some of the main strategic goals and achievements of the NCCR Bio-Inspired Materials, presents the main activities launched by the Center throughout its first funding phase, and provides a glimpse of new plans and directions for the second phase.

View Article and Find Full Text PDF

For many decades, it has been challenging to synthesize auxetic materials at the molecular level. Auxetic materials exhibit counterintuitive behavior; they expand perpendicularly to the direction in which they are stretched. An aromatic macrocycle containing a sequence of -substituted and -unsubstituted amides was designed to resemble the re-entrant structure found in macromolecular auxetic materials.

View Article and Find Full Text PDF