Proteome maintenance in contracting skeletal and cardiac muscles depends on the chaperone-regulating protein BAG3. Reduced BAG3 activity leads to muscle weakness and heart failure in animal models and patients. BAG3 and its chaperone partners recognize mechanically damaged muscle proteins and initiate their disposal through chaperone-assisted selective autophagy (CASA).
View Article and Find Full Text PDFPhagosomes are formed when phagocytic cells take up large particles, and they develop into phagolysosomes where the particles are degraded. The transformation of nascent phagosomes into phagolysosomes is a complex multi-step process, and the precise timing of these steps depends at least in part on phosphatidylinositol phosphates (PIPs). Some such-called "intracellular pathogens" are not delivered to microbicidal phagolysosomes and manipulate the PIP composition of the phagosomes they reside in.
View Article and Find Full Text PDFMethods Mol Biol
June 2023
Professional phagocytic cells, such as macrophages, ingest large particles into a specialized endocytic compartment, the phagosome, which eventually turns into a phagolysosome and degrades its contents. This phagosome "maturation" is governed by successive fusion of the phagosome with early sorting endosomes, late endosomes, and lysosomes. Further changes occur by fission of vesicles from the maturing phagosome and by on-and-off cycling of cytosolic proteins.
View Article and Find Full Text PDFSeveral ATP- and cytosol-dependent fusion processes between membranes of the endocytic and exocytic pathways have been biochemically reconstituted. Here, we present a phagosome-lysosome fusion reaction that is driven by micromolar concentrations of Ca2+ in the absence of ATP and cytosol. Investigating classical fusion and Ca2+-driven fusion (CaFu) side-by-side in vitro, using the same membrane preparations, we show that CaFu is faster than standard fusion (StaFu), leads to larger fusion products and is not blocked by established inhibitors of StaFu.
View Article and Find Full Text PDFThe transfer of endocytosed cargoes to lysosomes (LYSs) requires HOPS, a multiprotein complex that tethers late endosomes (LEs) to LYSs before fusion. Many proteins interact with HOPS on LEs/LYSs. However, it is not clear whether these HOPS interactors localize to LEs or LYSs or how they participate in tethering.
View Article and Find Full Text PDFProfessional phagocytic cells such as macrophages are a central part of innate immune defence. They ingest microorganisms into membrane-bound compartments (phagosomes), which acidify and eventually fuse with lysosomes, exposing their contents to a microbicidal environment. Gram-positive Rhodococcus equi can cause pneumonia in young foals and in immunocompromised humans.
View Article and Find Full Text PDFMol Biol Cell
February 2018
Phagosomes mature into phagolysosomes by sequential fusion with early endosomes, late endosomes, and lysosomes. Phagosome-with-lysosome fusion (PLF) results in the delivery of lysosomal hydrolases into phagosomes and in digestion of the cargo. The machinery that drives PLF has been little investigated.
View Article and Find Full Text PDFCommun Integr Biol
August 2016
Professional phagocytes engulf microbial invaders into plasma membrane-derived phagosomes. These mature into microbicidal phagolysosomes, leading to killing of the ingested microbe. Phagosome maturation involves sequential fusion of the phagosome with early endosomes, late endosomes, and the main degradative compartments in cells, lysosomes.
View Article and Find Full Text PDFProfessional phagocytic cells ingest microbial intruders by engulfing them into phagosomes, which subsequently mature into microbicidal phagolysosomes. Phagosome maturation requires sequential fusion of the phagosome with early endosomes, late endosomes, and lysosomes. Although various phosphoinositides (PIPs) have been detected on phagosomes, it remained unclear which PIPs actually govern phagosome maturation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2010
Uptake of microorganisms by professional phagocytic cells leads to formation of a new subcellular compartment, the phagosome, which matures by sequential fusion with early and late endocytic compartments, resulting in oxidative and nonoxidative killing of the enclosed microbe. Few tools are available to study membrane fusion between phagocytic and late endocytic compartments in general and with pathogen-containing phagosomes in particular. We have developed and applied a fluorescence microscopy assay to study fusion of microbe-containing phagosomes with different-aged endocytic compartments in vitro.
View Article and Find Full Text PDF