Psychiatric disorders, such as schizophrenia and other neuroinflammatory diseases are accompanied by an increase in the oxidative stress and changes in the immune system and in the metabolic, hormonal and neurological components of the central nervous system (CNS). Hydrogen sulfide (HS) is a gaseous molecule that is endogenously produced in the peripheral and central nervous system through cysteine by the following major HS producing enzymes in the brain: cystathionine-γlyase (CSE), cystathionine ß-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (MPST). The physiological effects of HS are broad, with antioxidative properties being a major role in the body.
View Article and Find Full Text PDFPlant extracts such as Hypericum perforatum and Pycnogenol have been tested as alternatives to the classical ADHD drugs. It has been possible to describe neuroprotective effects of such plant extracts. A reduction of ADHD symptoms could be shown in clinical studies after the application of Pycnogenol, which is a pine bark extract.
View Article and Find Full Text PDFOxidative DNA damage as one sign of reactive oxygen species induced oxidative stress is an important factor in the pathogenesis of various psychiatric disorders. Altered levels of DNA base damage products as well as the expression of the main repair enzyme 8-hydroxyguanine glycosylase 1 have been described. The aim of the present study was to examine the effects of drugs (amphetamine, methylphenidate and atomoxetine) used in the treatment of attention deficit-hyperactivity disorder on the expression of this enzyme via reverse transcriptase-polymerase chain reaction in human neuroblastoma SH-SY5Y and human monocytic U-937 cells at concentrations of 50, 500 and 5,000 ng/ml.
View Article and Find Full Text PDFAntipsychotics are known to alter antioxidant activities in vivo. Therefore, the aim of the present study was to examine in the human neuroblastoma SH-SY5Y cell line the impact of a typical (haloperidol) and an atypical (quetiapine) antipsychotic on the expression of genes encoding the key enzymes of the antioxidant metabolism (Cu, Zn superoxide dismutase; Mn superoxide dismutase; glutathione peroxidase; catalase) and enzymes of the glutathione metabolism (gamma-glutamyl cysteine synthetase, glutathione-S-transferase, gamma-glutamyltranspeptidase, glutathione reductase). The cells were incubated for 24h with 0.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
August 2008
Alterations of antioxidant enzyme activities have been described in a number of psychiatric disorders including major depression. Subsequently, the present study examined the effects of different types of antidepressants (desipramine, imipramine, maprotiline and mirtazapine) in different concentrations (10(-5), 10(-6) and 10(-7) M) on the mRNA levels of various enzymes of the antioxidant system, including both intracellular superoxide dismutase isoforms, glutathione peroxidase and catalase as well as several enzymes of the glutathione metabolism in monocytic U-937 cells after short- and long-term treatment (2.5 and 24 h) via RT-PCR.
View Article and Find Full Text PDFWorld J Biol Psychiatry
September 2005
A large number of neurological and psychiatric diseases like Morbus Parkinson, amyotrophic lateral sclerosis, dementia, schizophrenia and probably also affective disorders show an enhanced production of reactive oxygen species. Moreover, alterations of antioxidative systems and beneficial effects of antioxidative substances including steroid compounds such as estrogens have been described in several of these diseases. This review focuses on alterations of antioxidative systems in the course of neurological diseases and psychiatric disorders and on the differential effects of steroids on these systems in the central nervous system.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
February 2005
The cytokine interleukin-6 (IL-6) increases the levels of the physiological antioxidant glutathione (GSH) in peripheral organ systems such as liver tissue. Only little evidence exists about the actions of this cytokine on GSH in neuronal cell systems despite its possible neuroprotective effects. Therefore, we here characterized the effects of IL-6 on GSH in clonal hippocampal HT22 cells and in rat neuronal primary hippocampal cells.
View Article and Find Full Text PDF