Background: Gait analysis using foot-mounted IMUs is a promising method to acquire gait parameters outside of laboratory settings and in everyday clinical practice. However, the need for precise sensor attachment or calibration, the requirement of environments with a homogeneous magnetic field, and the limited applicability to pathological gait patterns still pose challenges. Furthermore, in previously published work, the measurement accuracy of such systems is often only validated for specific points in time or in a single plane.
View Article and Find Full Text PDFWalking is a central activity of daily life, and there is an increasing demand for objective measurement-based gait assessment. In contrast to stationary systems, wearable inertial measurement units (IMUs) have the potential to enable non-restrictive and accurate gait assessment in daily life. We propose a set of algorithms that uses the measurements of two foot-worn IMUs to determine major spatiotemporal gait parameters that are essential for clinical gait assessment: durations of five gait phases for each side as well as stride length, walking speed, and cadence.
View Article and Find Full Text PDFInt J Environ Res Public Health
August 2021
Demographic changes associated with an expanding and aging population will lead to an increasing number of orthopedic surgeries, such as joint replacements. To support patients' home exercise programs after total hip replacement and completing subsequent inpatient rehabilitation, a low-cost, smartphone-based augmented reality training game (TG) was developed. To evaluate its motion detection accuracy, data from 30 healthy participants were recorded while using the TG.
View Article and Find Full Text PDF