We present an application of periodic coupled-cluster theory to the calculation of CO adsorption energies on the Pt(111) surface for different adsorption sites. The calculations employ a range of recently developed theoretical and computational methods. In particular, we use a recently introduced coupled-cluster ansatz, denoted as CCSD(cT), to compute correlation energies of the metallic Pt surface with and without adsorbed CO molecules.
View Article and Find Full Text PDFWe investigate the convergence of coupled-cluster (CC) correlation energies and related quantities with respect to the employed basis set size for the uniform electron gas (UEG) to gain a better understanding of the basis set incompleteness error (BSIE). To this end, coupled-cluster doubles (CCD) theory is applied to the three-dimensional UEG for a range of densities, basis set sizes, and electron numbers. We present a detailed analysis of individual diagrammatically decomposed contributions to the amplitudes at the level of CCD theory.
View Article and Find Full Text PDFCoupled-cluster theories can be used to compute ab initio electronic correlation energies of real materials with systematically improvable accuracy. However, the widely used coupled cluster singles and doubles plus perturbative triples [CCSD(T)] method is only applicable to insulating materials. For zero-gap materials the truncation of the underlying many-body perturbation expansion leads to an infrared catastrophe.
View Article and Find Full Text PDFA first-principles study of the adsorption of a single water molecule on a layer of graphitic carbon nitride is reported employing an embedding approach for many-electron correlation methods. To this end, a plane-wave based implementation to obtain intrinsic atomic orbitals and Wannier functions for arbitrary localization potentials is presented. In our embedding scheme, the localized occupied orbitals allow for a separate treatment of short-range and long-range correlation contributions to the adsorption energy by a fragmentation of the simulation cell.
View Article and Find Full Text PDFWe present a basis set correction scheme for the coupled-cluster singles and doubles (CCSD) method. The scheme is based on employing frozen natural orbitals (FNOs) and diagrammatically decomposed contributions to the electronic correlation energy, which dominate the basis set incompleteness error (BSIE). As recently discussed in the work of Irmler et al.
View Article and Find Full Text PDFWe present an implementation of the equation of motion coupled-cluster singles and doubles (EOM-CCSD) theory using periodic boundary conditions and a plane wave basis set. Our implementation of EOM-CCSD theory is applied to study F-centers in alkaline earth oxides employing a periodic supercell approach. The convergence of the calculated electronic excitation energies for neutral color centers in MgO, CaO, and SrO crystals with respect to the orbital basis set and system size is explored.
View Article and Find Full Text PDFWe present a diagrammatic decomposition of the transition pair correlation function for the uniform electron gas. We demonstrate explicitly that ring and ladder diagrams are dual counterparts that capture significant long- and short-ranged interelectronic correlation effects, respectively. Our findings help to guide the further development of approximate many-electron theories and reveal that the contribution of the ladder diagrams to the electronic correlation energy can be approximated in an effective manner using second-order perturbation theory.
View Article and Find Full Text PDFWe investigate the basis-set convergence of electronic correlation energies calculated using coupled cluster theory and a recently proposed finite basis-set correction technique. The correction is applied to atomic and molecular systems and is based on a diagrammatically decomposed coupled cluster singles and doubles (CCSD) correlation energy. Only the second-order energy and the particle-particle ladder term are corrected for their basis-set incompleteness error.
View Article and Find Full Text PDFWe derive a new estimate for two-electron repulsion integrals (ERIs), when evaluated within a local atomic basis set. It is based on the multipole expansion and provides a rigorous upper bound of an ERI for well-separated charge distributions. The scheme is generally applicable in any formalism that uses ERIs.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2018
In this work, we present a robust implementation of the periodic Fock exchange for atom-centered Gaussian-type orbitals (GTOs). We discuss the divergence, appearing in the formulation of the periodic Fock exchange in the case of a finite number of k-points, and compare two schemes that remove it. These are the minimum image convention (MIC) and the truncated Coulomb interaction (TCI) that we use here in combination with k-meshes.
View Article and Find Full Text PDFMetallamacrocylic tetraruthenium complexes were generated by treatment of 1,4-divinylphenylene-bridged diruthenium complexes with functionalized 1,3-benzene dicarboxylic acids and characterized by HR ESI-MS and multinuclear NMR spectroscopy. Every divinylphenylene diruthenium subunit is oxidized in two consecutive one-electron steps with half-wave potential splittings in the range of 250 to 330 mV. Additional, smaller redox-splittings between the +/2+ and 0/+ and the 3+/4+ and 2+/3+ redox processes, corresponding to the first and the second oxidations of every divinylphenylene diruthenium entity, are due to electrostatic effects.
View Article and Find Full Text PDFSingle molecule magnets (SMMs) have attracted considerable attention due to low-temperature magnetic hysteresis and fascinating quantum effects. The investigation of these properties requires the possibility to deposit well-defined monolayers or spatially isolated molecules within a well-controlled adsorption geometry. Here we present a successful fabrication of self-organized arrays of Fe4 SMMs on hexagonal boron nitride (h-BN) on Rh(111) as template.
View Article and Find Full Text PDFUnderstanding of the electric transport through surface-anchored metal-organic frameworks (SURMOFs) is important both from a fundamental perspective as well as with regards to possible future applications in electronic devices. To address this mostly unexplored subject, we integrated a series of representative SURMOF thin films, formed by copper nodes and trimesic acid and known as HKUST-1, in a mercury-drop-based tunneling junction. Although the transport properties of these SURMOFs are analogous to those of hybrid metal-organic molecular wires, manifested by a very low value of the tunneling decay constant (β ≈ 0.
View Article and Find Full Text PDF