Publications by authors named "Andreas Huth"

Deriving gross & net primary productivity (GPP & NPP) and carbon turnover time of forests from remote sensing remains challenging. This study presents a novel approach to estimate forest productivity by combining radar remote sensing measurements, machine learning and an individual-based forest model. In this study, we analyse the role of different spatial resolutions on predictions in the context of the Radar BIOMASS mission (by ESA).

View Article and Find Full Text PDF

Large areas of tropical forests have been lost through deforestation, resulting in fragmented forest landscapes. However, the dynamics of forest fragmentation are still unknown, especially the critical forest edge areas, which are sources of carbon emissions due to increased tree mortality. We analyzed the changes in forest fragmentation for the entire tropics using high-resolution forest cover maps.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding forest functioning, structure, and diversity is complex, but advancements in data collection and modeling are helping to bridge this gap.
  • Different forest modeling communities have evolved their approaches, using simulation models to explore forest dynamics over various scales, which offers insights beyond typical field studies.
  • The paper highlights three modeling approaches, discusses their evolution, presents applications in key ecological issues, and identifies ten critical questions for future research using these models.
View Article and Find Full Text PDF

Ecological stability refers to a family of concepts used to describe how systems of interacting species vary through time and respond to disturbances. Because observed ecological stability depends on sampling scales and environmental context, it is notoriously difficult to compare measurements across sites and systems. Here, we apply stochastic dynamical systems theory to derive general statistical scaling relationships across time, space, and ecological level of organisation for three fundamental stability aspects: resilience, resistance, and invariance.

View Article and Find Full Text PDF

Ecology cannot yet fully explain why so many tree species coexist in natural communities such as tropical forests. A major difficulty is linking individual-level processes to community dynamics. We propose a combination of tree spatial data, spatial statistics and dynamical theory to reveal the relationship between spatial patterns and population-level interaction coefficients and their consequences for multispecies dynamics and coexistence.

View Article and Find Full Text PDF

Tropical forests are a critical component of the Earth system, storing half of the global forest carbon stocks and accounting for a third of terrestrial photosynthesis. Lianas are structural parasites that can substantially reduce the carbon sequestration capacity of these forests. Simulations of this peculiar growth form have only recently started and a single vegetation model included lianas so far.

View Article and Find Full Text PDF

Network analysis is an important tool to analyze the structure of complex systems such as tropical forests. Here, we infer spatial proximity networks in tropical forests by using network science. First, we focus on tree neighborhoods to derive spatial tree networks from forest inventory data.

View Article and Find Full Text PDF

Grasslands contribute to global biogeochemical cycles and can host a high number of plant species. Both-species dynamics and biogeochemical fluxes-are influenced by abiotic and biotic environmental factors, management and natural disturbances. In order to understand and project grassland dynamics under global change, vegetation models which explicitly capture all relevant processes and drivers are required.

View Article and Find Full Text PDF

Tropical forests play an important role in the global carbon cycle. High-resolution remote sensing techniques, e.g.

View Article and Find Full Text PDF

Stochasticity is a core component of ecology, as it underlies key processes that structure and create variability in nature. Despite its fundamental importance in ecological systems, the concept is often treated as synonymous with unpredictability in community ecology, and studies tend to focus on single forms of stochasticity rather than taking a more holistic view. This has led to multiple narratives for how stochasticity mediates community dynamics.

View Article and Find Full Text PDF

The connection between structure and stability of ecological networks has been widely studied in the last fifty years. A challenge that scientists continue to face is that in-depth mathematical model analysis is often difficult, unless the considered systems are specifically constrained. This makes it challenging to generalize results.

View Article and Find Full Text PDF

Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such "monodominant" forests are known from all of the main tropical regions.

View Article and Find Full Text PDF

Models are pivotal for assessing future forest dynamics under the impacts of changing climate and management practices, incorporating representations of tree growth, mortality, and regeneration. Quantitative studies on the importance of mortality submodels are scarce. We evaluated 15 dynamic vegetation models (DVMs) regarding their sensitivity to different formulations of tree mortality under different degrees of climate change.

View Article and Find Full Text PDF

Remote sensing enables the quantification of tropical deforestation with high spatial resolution. This in-depth mapping has led to substantial advances in the analysis of continent-wide fragmentation of tropical forests. Here we identified approximately 130 million forest fragments in three continents that show surprisingly similar power-law size and perimeter distributions as well as fractal dimensions.

View Article and Find Full Text PDF

Understanding the structure and dynamics of highly diverse tropical forests is challenging. Here we investigate the factors that drive the spatio-temporal variation of local tree numbers and species richness in a tropical forest (including 1250 plots of 20 × 20 m). To this end, we use a series of dynamic models that are built around the local spatial variation of mortality and recruitment rates, and ask which combination of processes can explain the observed spatial and temporal variation in tree and species numbers.

View Article and Find Full Text PDF

Managing ecosystem services in the context of global sustainability policies requires reliable monitoring mechanisms. While satellite Earth observation offers great promise to support this need, significant challenges remain in quantifying connections between ecosystem functions, ecosystem services, and human well-being benefits. Here, we provide a framework showing how Earth observation together with socioeconomic information and model-based analysis can support assessments of ecosystem service supply, demand, and benefit, and illustrate this for three services.

View Article and Find Full Text PDF

Deforestation in the tropics is not only responsible for direct carbon emissions but also extends the forest edge wherein trees suffer increased mortality. Here we combine high-resolution (30 m) satellite maps of forest cover with estimates of the edge effect and show that 19% of the remaining area of tropical forests lies within 100 m of a forest edge. The tropics house around 50 million forest fragments and the length of the world's tropical forest edges sums to nearly 50 million km.

View Article and Find Full Text PDF

While various relationships between productivity and biodiversity are found in forests, the processes underlying these relationships remain unclear and theory struggles to coherently explain them. In this work, we analyse diversity-productivity relationships through an examination of forest structure (described by basal area and tree height heterogeneity). We use a new modelling approach, called 'forest factory', which generates various forest stands and calculates their annual productivity (above-ground wood increment).

View Article and Find Full Text PDF

Aim: It has been recently suggested that different 'unified theories of biodiversity and biogeography' can be characterized by three common 'minimal sufficient rules': (1) species abundance distributions follow a hollow curve, (2) species show intraspecific aggregation, and (3) species are independently placed with respect to other species. Here, we translate these qualitative rules into a quantitative framework and assess if these minimal rules are indeed sufficient to predict multiple macroecological biodiversity patterns simultaneously.

Location: Tropical forest plots in Barro Colorado Island (BCI), Panama, and in Sinharaja, Sri Lanka.

View Article and Find Full Text PDF

Tropical forests are highly diverse ecosystems, but within such forests there can be large patches dominated by a single tree species. The myriad presumed mechanisms that lead to the emergence of such monodominant areas is currently the subject of intensive research. We used the most generic of these mechanisms, large seed mass and low dispersal ability of the monodominant species, in a spatially explicit model.

View Article and Find Full Text PDF

The search for simple principles underlying the complex architecture of ecological communities such as forests still challenges ecological theorists. We use tree diameter distributions--fundamental for deriving other forest attributes--to describe the structure of tropical forests. Here we argue that tree diameter distributions of natural tropical forests can be explained by stochastic packing of tree crowns representing a forest crown packing system: a method usually used in physics or chemistry.

View Article and Find Full Text PDF

Interactions among neighboring individuals influence plant performance and should create spatial patterns in local community structure. In order to assess the role of large trees in generating spatial patterns in local species richness, we used the individual species-area relationship (ISAR) to evaluate the species richness of trees of different size classes (and dead trees) in circular neighborhoods with varying radius around large trees of different focal species. To reveal signals of species interactions, we compared the ISAR function of the individuals of focal species with that of randomly selected nearby locations.

View Article and Find Full Text PDF

Tropical forests are carbon-dense and highly productive ecosystems. Consequently, they play an important role in the global carbon cycle. In the present study we used an individual-based forest model (FORMIND) to analyze the carbon balances of a tropical forest.

View Article and Find Full Text PDF

Assessing the relative importance of different processes that determine the spatial distribution of species and the dynamics in highly diverse plant communities remains a challenging question in ecology. Previous modelling approaches often focused on single aggregated forest diversity patterns that convey limited information on the underlying dynamic processes. Here, we use recent advances in inference for stochastic simulation models to evaluate the ability of a spatially explicit and spatially continuous neutral model to quantitatively predict six spatial and non-spatial patterns observed at the 50 ha tropical forest plot on Barro Colorado Island, Panama.

View Article and Find Full Text PDF

Tropical forests play an important role in the global carbon cycle, as they store a large amount of carbon (C). Tropical forest deforestation has been identified as a major source of CO2 emissions, though biomass loss due to fragmentation--the creation of additional forest edges--has been largely overlooked as an additional CO2 source. Here, through the combination of remote sensing and knowledge on ecological processes, we present long-term carbon loss estimates due to fragmentation of Neotropical forests: within 10 years the Brazilian Atlantic Forest has lost 69 (±14) Tg C, and the Amazon 599 (±120) Tg C due to fragmentation alone.

View Article and Find Full Text PDF