We present a detailed study of the field-dependent specific heat of the bimetallic ferromagnetically coupled chain compound MnNi(NO2)4(en)2, en = ethylenediamine. For this material, which in zero field orders antiferromagnetically below TN=2.45 K, small fields suppress magnetic order.
View Article and Find Full Text PDFWe present numerical evidence for the crystallization of magnons below the saturation field at nonzero temperatures for the highly frustrated spin-half kagome Heisenberg antiferromagnet. This phenomenon can be traced back to the existence of independent localized magnons or, equivalently, flatband multimagnon states. We present a loop-gas description of these localized magnons and a phase diagram of this transition, thus providing information for which magnetic fields and temperatures magnon crystallization can be observed experimentally.
View Article and Find Full Text PDFBackground: To ensure further genetic gain, genomic approaches in plant breeding rely on precise phenotypic data, describing plant structure, function and performance. A more precise characterization of the environment will allow a better dealing with genotype-by-environment-by-management interactions. Therefore, space and time dependencies of the crop production processes have to be considered.
View Article and Find Full Text PDFThe description of quantized collective excitations stands as a landmark in the quantum theory of condensed matter. A prominent example occurs in conventional magnets, which support bosonic magnons-quantized harmonic fluctuations of the ordered spins. In striking contrast is the recent discovery that strongly spin-orbital-coupled magnets, such as α-RuCl, may display a broad excitation continuum inconsistent with conventional magnons.
View Article and Find Full Text PDFWe investigate the edge-state magnetism of graphene nanoribbons using projective quantum Monte Carlo simulations and a self-consistent mean-field approximation of the Hubbard model. The static magnetic correlations are found to be short ranged. Nevertheless, the correlation length increases with the width of the ribbon such that already for ribbons of moderate widths we observe a strong trend towards mean-field-type ferromagnetic correlations at a zigzag edge.
View Article and Find Full Text PDFThe natural mineral azurite Cu(3)(CO(3))(2)(OH)(2) is a frustrated magnet displaying unusual and controversially discussed magnetic behavior. Motivated by the lack of a unified description for this system, we perform a theoretical study based on density functional theory as well as state-of-the-art numerical many-body calculations. We propose an effective generalized spin-1/2 diamond chain model which provides a consistent description of experiments: low-temperature magnetization, inelastic neutron scattering, nuclear magnetic resonance measurements, magnetic susceptibility as well as new specific heat measurements.
View Article and Find Full Text PDFJ Phys Condens Matter
April 2011
The natural mineral azurite Cu(3)(CO(3))(2)(OH)(2) is an interesting spin-1/2 quantum antiferromagnet. Recently, a generalized diamond chain model has been established as a good description of the magnetic properties of azurite with parameters placing it in a highly frustrated parameter regime. Here we explore further properties of this model for azurite.
View Article and Find Full Text PDF