Publications by authors named "Andreas Hofzumahaus"

Oxidized Organic Aerosol (OOA), a major component of fine atmospheric particles, impacts climate and human health. Previous experiments and atmospheric models emphasize the importance of nocturnal OOA formation from NO· oxidation of biogenic VOCs. This seasonal study extends the understanding by showing that nocturnal oxidation of biomass-burning emissions can account for up to half of total OOA production in fall and winter.

View Article and Find Full Text PDF

The oxidation of nitric oxide to nitrogen dioxide by hydroperoxy (HO) and organic peroxy radicals (RO) is responsible for the chemical net ozone production in the troposphere and for the regeneration of hydroxyl radicals, the most important oxidant in the atmosphere. In Summer 2014, a field campaign was conducted in the North China Plain, where increasingly severe ozone pollution has been experienced in the last years. Chemical conditions in the campaign were representative for this area.

View Article and Find Full Text PDF

In contrast to summer smog, the contribution of photochemistry to the formation of winter haze in northern mid-to-high latitude is generally assumed to be minor due to reduced solar UV and water vapor concentrations. Our comprehensive observations of atmospheric radicals and relevant parameters during several haze events in winter 2016 Beijing, however, reveal surprisingly high hydroxyl radical oxidation rates up to 15 ppbv/h, which is comparable to the high values reported in summer photochemical smog and is two to three times larger than those determined in previous observations during winter in Birmingham (Heard et al. 2004, 31, (18)), Tokyo (Kanaya et al.

View Article and Find Full Text PDF

Ye et al. have determined a maximum nitrous acid (HONO) yield of 3% for the reaction HO2·H2O + NO2, which is much lower than the yield used in our work. This finding, however, does not affect our main result that HONO in the investigated Po Valley region is mainly from a gas-phase source that consumes nitrogen oxides.

View Article and Find Full Text PDF

Gaseous nitrous acid (HONO) is an important precursor of tropospheric hydroxyl radicals (OH). OH is responsible for atmospheric self-cleansing and controls the concentrations of greenhouse gases like methane and ozone. Due to lack of measurements, vertical distributions of HONO and its sources in the troposphere remain unclear.

View Article and Find Full Text PDF

In this study we investigated the secondary formation of HO(2) following the benzene + OH reaction in N(2) with variable O(2) content at atmospheric pressure and room temperature in the absence of NO. After pulsed formation of OH, HO(x) (= OH + HO(2)) and OH decay curves were measured by means of a laser-induced fluorescence technique (LIF). In synthetic air the total HO(2) yield was determined to be 0.

View Article and Find Full Text PDF

The degradation of trace gases and pollutants in the troposphere is dominated by their reaction with hydroxyl radicals (OH). The importance of OH rests on its high reactivity, its ubiquitous photochemical production in the sunlit atmosphere, and most importantly on its regeneration in the oxidation chain of the trace gases. In the current understanding, the recycling of OH proceeds through HO2 reacting with NO, thereby forming ozone.

View Article and Find Full Text PDF

A new method (ROxLIF) for the measurement of atmospheric peroxy radicals (HO(2) and RO(2)) was developed using a two-step chemical conversion scheme and laser-induced fluorescence (LIF) for radical detection. Ambient air is sampled into a differentially pumped flow reactor, in which atmospheric RO(x) radicals (=RO(2)+RO+HO(2)+OH) are chemically converted to HO(2) by a large excess of NO and CO at reduced pressures (ROx mode). When only CO is added as a reagent, the sum of atmospheric HO(2)+OH is converted to HO(2) (HOx mode).

View Article and Find Full Text PDF