Endothelin was first discovered more than 30 years ago as a potent vasoconstrictor. In subsequent years, three isoforms, two canonical receptors, and two converting enzymes were identified, and their basic functions were elucidated by numerous preclinical and clinical studies. Over the years, the endothelin system has been found to be critical in the pathogenesis of several cardiovascular diseases, including hypertension, pulmonary arterial hypertension, heart failure, and coronary artery disease.
View Article and Find Full Text PDFBackground Cardiac extracellular matrix is critically involved in cardiac homeostasis, and accumulation of chondroitin sulfate glycosaminoglycans (CS-GAGs) was previously shown to exacerbate heart failure by augmenting inflammation and fibrosis at the chronic phase. However, the mechanism by which CS-GAGs affect cardiac functions remains unclear, especially at the acute phase. Methods and Results We explored a role of CS-GAG in heart failure using mice with target deletion of ChGn-2 (chondroitin sulfate N-acetylgalactosaminyltransferase-2) that elongates CS chains of glycosaminoglycans.
View Article and Find Full Text PDFBackground: Hyperuricemia contributed to endothelial dysfunction, activation of the RAS system, increased oxidative stress and maladaptive immune system response. M1 and M2 macrophages were known to contribute to the onset of renal fibrosis. This study aimed to look at the effect of lowering serum uric acid levels on renal injury in mice.
View Article and Find Full Text PDF