Publications by authors named "Andreas H Wagner"

Severity and outcome of strokes following cerebral hypoperfusion are significantly influenced by stress responses of the blood vessels. In this context, brain endothelial cells (BEC) regulate inflammation, angiogenesis and the vascular resistance to rapidly restore perfusion. Despite the relevance of these responses for infarct volume and tissue recovery, their transcriptional control in BEC is not well characterized.

View Article and Find Full Text PDF

Foam cells in atheroma are engorged with lipid droplets (LDs) that contain esters of regulatory lipids whose metabolism remains poorly understood. LD-associated hydrolase (LDAH) has a lipase structure and high affinity for LDs of foam cells. Using knockout and transgenic mice of both sexes, here we show that LDAH inhibits atherosclerosis development and promotes stable lesion architectures.

View Article and Find Full Text PDF

Rupture or dissection of thoracic aortic aneurysms is still the leading cause of death for patients diagnosed with Marfan syndrome. Inflammation and matrix digestion regulated by matrix metalloproteases (MMPs) play a major role in the pathological remodeling of the aortic media. Regnase-1 is an endoribonuclease shown to cleave the mRNA of proinflammatory cytokines, such as interleukin-6.

View Article and Find Full Text PDF

Background And Aims: Hyperglycemia reinforces pro-inflammatory conditions that enhance CD40 expression in endothelial cells (EC). Thymine to cytosine transition (-1T > C) in the promoter of the CD40 gene (rs1883832) further increases the abundance of CD40 protein on the EC surface. This study examines potential associations of the -1T > C SNP of the CD40 gene with type 1 (T1D) or type 2 (T2D) diabetes.

View Article and Find Full Text PDF

Background: Homozygosity for the C allele of the -1T>C single nucleotide polymorphism (SNP) of the gene (rs1883832) is associated with susceptibility to coronary heart disease (CHD), enhanced CD40 expression, and shedding. The disintegrin metalloprotease ADAM17 can cleave various cell surface proteins. This study investigates an association between ADAM17-mediated CD40 shedding and inflammation in CC genotype human endothelial cells.

View Article and Find Full Text PDF

Activation of the mechanistic target of rapamycin (mTOR) pathway has been implicated in an increasing number of diseases, including Marfan syndrome (MFS), an inherited connective tissue disorder. mTOR-dependent reactive oxygen species (ROS) formation has also been suggested to play a role in aortic aneurysm formation in MFS patients. This study aimed to characterize the effects of mTOR inhibition by rapamycin on key redox enzymes and NADPH oxidases (NOX) in cultured vascular smooth muscle cells of a murine MFS model.

View Article and Find Full Text PDF

Marfan syndrome (MFS) is one of the most common inherited disorders of connective tissue caused by mutations of the fibrillin-1 gene (FBN1). Vascular abnormalities, such as the enlargement of the aorta with the risk of life-threatening rupture are frequently observed. However, current treatment is limited and therapeutic options focus solely on symptomatic therapy.

View Article and Find Full Text PDF

The distribution of atherosclerotic lesions in the aorta and its branches of ApoE knockout (ApoE) mice is like that of patients with atherosclerosis. By using high-resolution MALDI mass spectrometry imaging (MSI), we aimed at characterizing universally applicable physiological biomarkers by comparing the murine lipid marker profile with that of human atherosclerotic arteries. Therefore, the aorta or carotid artery of male ApoE mice at different ages, human arteries with documented atherosclerotic changes originated from amputated limbs, and corresponding controls were analysed.

View Article and Find Full Text PDF

ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) is a zinc-containing metalloprotease also known as von Willebrand factor (vWF)-cleaving protease. Low ADAMTS13 plasma levels are associated with an increased risk of arterial thrombosis, including myocardial infarction and cerebrovascular disease. The expression and regulation of this metalloprotease in human endothelial cells have not been systematically investigated.

View Article and Find Full Text PDF

Previous studies have underlined the substantial role of nuclear factor of activated T cells (NFAT) in hypertension-induced myocardial hypertrophy ultimately leading to heart failure. Here, we aimed at neutralizing four members of the NFAT family of transcription factors as a therapeutic strategy for myocardial hypertrophy transiting to heart failure through AAV-mediated cardiac expression of a RNA-based decoy oligonucleotide (dON) targeting NFATc1-c4. AAV-mediated dON expression markedly decreased endothelin-1 induced cardiomyocyte hypertrophy in vitro and resulted in efficient expression of these dONs in the heart of adult mice as evidenced by fluorescent in situ hybridization.

View Article and Find Full Text PDF

Gene therapeutic approaches to aortic diseases require efficient vectors and delivery systems for transduction of endothelial cells (ECs) and smooth muscle cells (SMCs). Here, we developed a novel strategy to efficiently deliver a previously described vascular-specific adeno-associated viral (AAV) vector to the abdominal aorta by application of alginate hydrogels. To efficiently transduce ECs and SMCs, we used AAV9 vectors with a modified capsid (AAV9SLR) encoding enhanced green fluorescent protein (EGFP), as wild-type AAV vectors do not transduce ECs and SMCs well.

View Article and Find Full Text PDF

Aims: Marfan syndrome is one of the most common inherited disorders of connective tissue caused by fibrillin-1 mutations, characterized by enhanced transcription factor AP-1 DNA binding activity and subsequently abnormally increased expression and activity of matrix-metalloproteinases (MMPs). We aimed to establish a novel adeno-associated virus (AAV)-based strategy for long-term expression of an AP-1 neutralizing RNA hairpin (hp) decoy oligonucleotide (dON) in the aorta to prevent aortic elastolysis in a murine model of Marfan syndrome.

Methods And Results: Using fibrillin-1 hypomorphic mice (mgR/mgR), aortic grafts from young (9 weeks old) donor mgR/mgR mice were transduced ex vivo with AAV vectors and implanted as infrarenal aortic interposition grafts in mgR/mgR mice.

View Article and Find Full Text PDF

Local lipid variations in tissues are readily revealed with mass spectrometry imaging (MSI) methods, and the resulting lipid distributions serve as bioanalytical signatures to reveal cell- or tissue-specific lipids. Comprehensive MSI lipid mapping requires measurements in both ion polarities. Additionally, structural lipid characterization is necessary to link the lipid structure to lipid function.

View Article and Find Full Text PDF

Graft rejection remains the major obstacle after vascularized solid organ transplantation. Endothelial cells, which form the interface between the transplanted graft and the host's immunity, are the first target for host immune cells. During acute cellular rejection endothelial cells are directly attacked by HLA I and II-recognizing NK cells, macrophages, and T cells, and activation of the complement system leads to endothelial cell lysis.

View Article and Find Full Text PDF

Background:  von Willebrand factor (vWF) plays an important role in platelet activation. CD40-CD40 ligand (CD40L) induced vWF release has been described in large vessels and cultured endothelium, but its role in the microcirculation is not known. Here, we studied whether CD40 is expressed in murine microvessels , whether CD40L induces platelet adhesion and leukocyte activation, and how deficiency of the vWF cleaving enzyme ADAMTS13 affects these processes.

View Article and Find Full Text PDF

Background: Allograft vasculopathy (AV) is the primary limiting factor for long-term graft survival. An increased activity of matrix metalloproteinases (MMPs) contributes to neointima formation in AV and represents a potential therapeutic target. Adeno-associated virus (AAV)-mediated gene therapy comprises a potentially benign vector model for the long-term expression of MMP antagonists.

View Article and Find Full Text PDF

Transplant vasculopathy (TV), characterized by obstructive lesions in affected vessels, represents one of the long-term complications of cardiac transplantation. Activation of the transcription factor activator protein-1 (AP-1) is implicated in smooth muscle cell (SMC) phenotypic switch from contractile to synthetic function, increasing the migration and proliferation rate of these cells. We hypothesize that adeno-associated virus (AAV)-mediated delivery of an RNA hairpin AP-1 decoy oligonucleotide (dON) might effectively ameliorate TV severity in a mouse aortic allograft model.

View Article and Find Full Text PDF

The anatomic arrangement of microvascular endothelial cells and cardiomyocytes in vivo enables close interactions among these cells. In our in vitro co-culture system, ANP and BNP expression in the mouse atrial cardiomyocyte cell line HL-1 and subsequent ANP release were significantly upregulated when co-cultured with mouse cardiac microvascular endothelial cells or exposed to endothelial cell-conditioned medium. Endothelin-1 (ET-1) activation of endothelial cells remarkably enhanced their paracrine effect on cardiomyocyte gene expression, suggesting that ET-1 stimulation of endothelial cells affects expression of fetal genes such as ANP and BNP in adult cardiomyocytes through paracrine signalling.

View Article and Find Full Text PDF

Aims: Endothelial dysfunction is a major contributor to the pathogenesis of atherosclerosis. CD40-CD40 ligand interactions confer a pro-inflammatory phenotype to endothelial cells (ECs). Recently, a thymine to cytosine transition (-1T>C) in the Kozak sequence of the CD40 gene (rs1883832) has been associated with coronary heart disease (CHD) in an Asian population.

View Article and Find Full Text PDF

Rationale: Fluid shear stress (FSS) maintains NOS-3 (endothelial NO synthase) expression. Homozygosity for the C variant of the T-786C single-nucleotide polymorphism of the NOS3 gene, which solely exists in humans, renders the gene less sensitive to FSS, resulting in a reduced endothelial cell (EC) capacity to generate NO. Decreased bioavailability of NO in the arterial vessel wall facilitates atherosclerosis.

View Article and Find Full Text PDF

Methylglyoxal (MG) is a by-product of glucose metabolism and its accumulation has been linked to the development of diabetic complications such as retinopathy and nephropathy by affecting multiple signalling pathways. However, its influence on the intracellular Ca homeostasis and particularly Ca entry, which has been reported to be mediated via TRPA1 channels in DRG neurons, has not been studied in much detail in other cell types. In this study, we report the consequences of acute and long-term MG application on intracellular Ca levels in endothelial cells.

View Article and Find Full Text PDF

Background:  Transplant vasculopathy (TV) is the main limiting factor for long-term graft survival characterized by fibrosis, myofibroblast, and smooth muscle cell (SMC) proliferation. Decoy oligodeoxynucleotide (dODN) against the transcription factor activator protein-1 (AP-1) might interfere with the expression of AV-related genes that govern neointima formation.

Methods:  Aortic allografts from DBA/2 mice were incubated with control buffer, consensus, or mutated control AP-1 dODN and were transplanted into the infrarenal aorta of C57BL/6 mice.

View Article and Find Full Text PDF

Macrophages are large phagocytes playing a crucial role in the development and progression of atherosclerosis. The phenotypic polarization and activation of macrophages in atherosclerotic plaques depends on their complex micro-environment and at the same time has a major impact on the vulnerability or stability of advanced atherosclerotic lesions. Many in vitro and in vivo studies have been designed to define markers for macrophage subtypes to better understand the mechanism of plaque progression but they have rather added to the confusion.

View Article and Find Full Text PDF

Monocyte extravasation into the vessel wall is a key step in atherogenesis. It is still elusive how monocytes transmigrate through the endothelial cell (EC) monolayer at atherosclerosis predilection sites. Platelets tethered to ultra-large von Willebrand factor (ULVWF) multimers deposited on the luminal EC surface following CD40 ligand (CD154) stimulation may facilitate monocyte diapedesis.

View Article and Find Full Text PDF