MALT1 is a core component of the CARD11-BCL10-MALT1 (CBM) signalosome, in which it acts as a scaffold and a protease to bridge T cell receptor (TCR) ligation to immune activation. As a scaffold, MALT1 binds to TRAF6, and T cell-specific TRAF6 ablation or destruction of MALT1-TRAF6 interaction provokes activation of conventional T (Tconv) effector cells. In contrast, MALT1 protease activity controls the development and suppressive function of regulatory T (Treg) cells in a T cell-intrinsic manner.
View Article and Find Full Text PDFAlthough CRISPR-Cas9 genome editing can be performed directly in single-cell mouse zygotes, the targeting efficiency for more complex modifications such as the insertion of two loxP sites, multiple mutations in cis, or the precise insertion or deletion of longer DNA sequences often remains low (Cohen, 2016). Thus, targeting and validation of correct genomic modification in murine embryonic stem cells (ESCs) with subsequent injection into early-stage mouse embryos may still be preferable, allowing for large-scale screening before transfer of thoroughly characterized and genetically defined ESC clones into the germline. This procedure can result in a reduction of animal numbers with cost effectiveness and compliance with the 3R principle of animal welfare regulations.
View Article and Find Full Text PDFThe molecular mechanisms that drive the acquisition of distinct neural crest cell (NCC) fates is still poorly understood. Here, we identified Prdm6 as an epigenetic modifier that temporally and spatially regulates the expression of NCC specifiers and determines the fate of a subset of migrating cardiac NCCs (CNCCs). Using transcriptomic analysis and genetic and fate mapping approaches in transgenic mice, we showed that disruption of Prdm6 was associated with impaired CNCC differentiation, delamination, and migration and led to patent ductus arteriosus (DA) and ventricular noncompaction.
View Article and Find Full Text PDFBalanced control of T cell signaling is critical for adaptive immunity and protection from autoimmunity. By combining genetically engineered mouse models, biochemical analyses and pharmacological interventions, we describe an unexpected dual role of the tumor necrosis factor receptor–associated factor 6 (TRAF6) E3 ligase as both a positive and negative regulator of mucosa-associated lymphoid tissue 1 (MALT1) paracaspase. Although MALT1-TRAF6 recruitment is indispensable for nuclear factor κB signaling in activated T cells, TRAF6 counteracts basal MALT1 protease activity in resting T cells.
View Article and Find Full Text PDFJurkat T cells have been of central importance for the discovery of signalling mediators driving NF-κB activation in response to T cell antigen receptor (TCR)/CD28 co-stimulation. The critical function of the key regulators identified in Jurkat T cells has subsequently been verified in primary murine and human T cells. CRISPR/Cas9-mediated genomic editing techniques in combination with viral reconstitution are powerful tools that now enable the investigation of the exact molecular mechanisms that govern T cell signalling, especially the impact of protein-protein interactions, protein modifications, or cancer-associated gain- or loss-of-function mutations.
View Article and Find Full Text PDFBackground: The anticancer potential of pharmacologic ascorbic acid (AA) has been detected in a number of cancer cells. However, study suggested a strongly reduced cytotoxic activity of AA. It was known that pH could be a critical influencing factor for multiple anticancer treatments.
View Article and Find Full Text PDFRegulatory T cells (Tregs) have crucial functions in the inhibition of immune responses. Their development and suppressive functions are controlled by the T cell receptor (TCR), but the TCR signaling mechanisms that mediate these effects remain ill-defined. Here we show that CARD11-BCL10-MALT1 (CBM) signaling mediates TCR-induced NF-κB activation in Tregs and controls the conversion of resting Tregs to effector Tregs under homeostatic conditions.
View Article and Find Full Text PDFObjective: The initial steps of pancreatic regeneration versus carcinogenesis are insufficiently understood. Although a combination of oncogenic Kras and inflammation has been shown to induce malignancy, molecular networks of early carcinogenesis remain poorly defined.
Design: We compared early events during inflammation, regeneration and carcinogenesis on histological and transcriptional levels with a high temporal resolution using a well-established mouse model of pancreatitis and of inflammation-accelerated Kras-driven pancreatic ductal adenocarcinoma.
MALT1 channels proximal T-cell receptor (TCR) signalling to downstream signalling pathways. With MALT1A and MALT1B two conserved splice variants exist and we demonstrate here that MALT1 alternative splicing supports optimal T-cell activation. Inclusion of exon7 in MALT1A facilitates the recruitment of TRAF6, which augments MALT1 scaffolding function, but not protease activity.
View Article and Find Full Text PDFType I interferon constitutes an essential component of the combinational therapy against viral disease. Acute pancreatitis is one side effect of type I interferon-based therapy, implying that activation of type I interferon signaling affects the homeostasis and integrity of pancreatic acinar cells. Here, we investigated the role of type I interferon signaling in pancreatic acinar cells using a caerulein-induced murine model of acute pancreatitis.
View Article and Find Full Text PDFThe paracaspase Malt1 is a central regulator of antigen receptor signaling that is frequently mutated in human lymphoma. As a scaffold, it assembles protein complexes for NF-κB activation, and its proteolytic domain cleaves negative NF-κB regulators for signal enforcement. Still, the physiological functions of Malt1-protease are unknown.
View Article and Find Full Text PDFNext-generation DNA sequencing has accelerated the genetic characterization of many human primary immunodeficiency diseases (PIDs). These discoveries can be lifesaving for the affected patients and also provide a unique opportunity to study the effect of specific genes on human immune function. In the past 18 months, a number of independent groups have begun to define novel PIDs caused by defects in the caspase recruitment domain family, member 11 (CARD11)-B-cell chronic lymphocytic leukemia/lymphoma 10 (BCL10)-mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1 [CBM]) signalosome complex.
View Article and Find Full Text PDFRecognition of cell death by the innate immune system triggers inflammatory responses. However, how these reactions are regulated is not well understood. Here, we identify the inhibitory C-type lectin receptor Clec12a as a specific receptor for dead cells.
View Article and Find Full Text PDFMembers of the PRDM protein family have been shown to play important roles during embryonic development. Previous in vitro and in situ analyses indicated a function of Prdm6 in cells of the vascular system. To reveal physiological functions of Prdm6, we generated conditional Prdm6-deficient mice.
View Article and Find Full Text PDFBackground: Combined immunodeficiency (CID) is characterized by severe recurrent infections with normal numbers of T and B lymphocytes but with deficient cellular and humoral immunity. Most cases are sporadic, but autosomal recessive inheritance has been described. In most cases, the cause of CID remains unknown.
View Article and Find Full Text PDFPeripheral T cell lymphomas (PTCLs) are highly aggressive malignancies with poor prognosis. Their molecular pathogenesis is not well understood and small animal models for the disease are lacking. Recently, the chromosomal translocation t(5;9)(q33;q22) generating the interleukin-2 (IL-2)-inducible T cell kinase (ITK)-spleen tyrosine kinase (SYK) fusion tyrosine kinase was identified as a recurrent event in PTCL.
View Article and Find Full Text PDFDiffuse large B cell lymphoma (DLBCL) is the most common type of lymphoma in humans. The aggressive activated B cell-like (ABC) subtype of DLBCL is characterized by constitutive NF-kappaB activity and requires signals from CARD11, BCL10, and the paracaspase MALT1 for survival. CARD11, BCL10, and MALT1 are scaffold proteins that normally associate upon antigen receptor ligation.
View Article and Find Full Text PDFCD40, a member of the tumor necrosis factor (TNF) receptor family, plays an essential role in T cell-dependent immune responses. Because CD40 is widely expressed on the surface of tumor cells in various B cell malignancies, deregulated CD40 signaling has been suggested to contribute to lymphomagenesis. In this study, we show that B cell-specific expression of a constitutively active CD40 receptor, in the form of a latent membrane protein 1 (LMP1)/CD40 chimeric protein, promoted an increase in the number of follicular and marginal zone B cells in secondary lymphoid organs in transgenic mice.
View Article and Find Full Text PDFNF-kappaB (Rel) transcription factors control physiological and pathological immune cell function. The scaffold proteins Bcl-10 and MALT1 couple antigen-receptor signals to the canonical NF-kappaB pathway and are pivotal in lymphomagenesis. Here we found that Bcl-10 and MALT1 differentially regulated B cell receptor-induced activation of RelA and c-Rel.
View Article and Find Full Text PDFFungal infections are increasing worldwide due to the marked rise in immunodeficiencies including AIDS; however, immune responses to fungi are poorly understood. Dectin-1 is the major mammalian pattern recognition receptor for the fungal component zymosan. Dectin-1 represents the prototype of innate non-Toll-like receptors (TLRs) containing immunoreceptor tyrosine-based activation motifs (ITAMs) related to those of adaptive antigen receptors.
View Article and Find Full Text PDFWe have isolated Spike, a novel and evolutionary conserved BH3-only protein. BH3-only proteins constitute a family of apoptosis inducers that mediate proapoptotic signals. In contrast to most proteins of this family, Spike was not found to be associated with mitochondria.
View Article and Find Full Text PDFWe have isolated Ubp41, a ubiquitin-specific protease, in a screen for proapoptoticgenes. We found that overexpression of Ubp41 is sufficient to elicit all features of apoptosis in human cells. In contrast, an enzymatically defective UBP41 mutant and homologous ubiquitin-processing protease family members did not significantly induce cell death.
View Article and Find Full Text PDFA novel second streptomycete cyclophilin gene-designated sccypB-was isolated from a cosmid gene library of Streptomyces chrysomallus by using as gene probe a fragment of the previously isolated cyclophilin gene sccypA of the same organism. From its sequence the gene sccypB should encode a protein of M(r) 18868. Expression of sccypB in Escherichia coli as a hexaHis-tagged fusion protein (H6ScCypB) and enzymic characterization of the purified protein showed that, like ScCypA, ScCypB is a peptidyl-prolyl cis-trans isomerase (PPIase).
View Article and Find Full Text PDF