Mono-ADP-ribosylation is a dynamic post-translational modification (PTM) with important roles in cell signalling. This modification occurs on a wide variety of amino acids, and one of the canonical modification sites within proteins is the side chain of glutamic acid. Given the transient nature of this modification (acylal linkage) and the high sensitivity of ADP-ribosylated glutamic acid, stabilized isosteres are required for structural and biochemical studies.
View Article and Find Full Text PDFIntrinsically disordered protein regions form condensates and mediate interactions with factors that regulate gene activity. Patil et al. decode how such regions within the chromatin remodeler cBAF choreograph self-condensation and non-self interactions with transcriptional regulators, potentially impacting disease.
View Article and Find Full Text PDFCells employ global genome nucleotide excision repair (GGR) to eliminate a broad spectrum of DNA lesions, including those induced by UV light. The lesion-recognition factor XPC initiates repair of helix-destabilizing DNA lesions, but binds poorly to lesions such as CPDs that do not destabilize DNA. How difficult-to-repair lesions are detected in chromatin is unknown.
View Article and Find Full Text PDFHeterochromatin formation requires three distinct steps: nucleation, self-propagation (spreading) along the chromosome, and faithful maintenance after each replication cycle. Impeding any of those steps induces heterochromatin defects and improper gene expression. The essential histone chaperone FACT (facilitates chromatin transcription) has been implicated in heterochromatin silencing, but the mechanisms by which FACT engages in this process remain opaque.
View Article and Find Full Text PDFADP-ribosylation is a pivotal post-translational modification that mediates various important cellular processes producing negatively charged biopolymer, poly (ADP-ribose), the functions of which need further elucidation. Toward this end, the availability of well-defined ADP-ribose (ADPr) oligomers in sufficient quantities is a necessity. In this work, we demonstrate the chemical synthesis of linear ADPr oligomers of defined, increasing length using a modified solid phase synthesis method.
View Article and Find Full Text PDFMitochondria constantly undergo fusion and fission events, referred as mitochondrial dynamics, which determine mitochondrial architecture and bioenergetics. Cultured cell studies demonstrate that mitochondrial dynamics are acutely regulated by phosphorylation of the mitochondrial fission orchestrator dynamin-related protein 1 (Drp1) at S579 or S600. However, the physiological impact and crosstalk of these phosphorylation sites is poorly understood.
View Article and Find Full Text PDFRibosomal RNA genes (rDNA) are highly unstable and susceptible to rearrangement due to their repetitive nature and active transcriptional status. Sequestration of rDNA in the nucleolus suppresses uncontrolled recombination. However, broken repeats must be first released to the nucleoplasm to allow repair by homologous recombination.
View Article and Find Full Text PDFMutations in ataxia telangiectasia mutated (ATM) kinase lead to cerebellar neurodegeneration. In this issue of Molecular Cell, Lee et al. (2021) revealed how transcription-induced reactive oxygen species and DNA-RNA hybrids activate PARP enzymes, generating the nucleic acid poly-ADP-ribose, which promotes the accumulation of protein aggregates in A-T-like disorders.
View Article and Find Full Text PDFThe anti-tumor potency of poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) has been linked to trapping of PARP1 on damaged chromatin. However, little is known about their impact on PARP2, an isoform with overlapping functions at DNA lesions. Whether the release of PARP1/2 from DNA lesions is actively catalyzed by molecular machines is also not known.
View Article and Find Full Text PDFPARP enzymes are increasingly taking on important roles beyond DNA repair. Huang et al. (2020b) report how the NAD-dependent ADP-ribosylation of histone H2B by PARP-1 in complex with a metabolic enzyme suppresses the phosphorylation of an adjacent residue, impacting adipogenesis.
View Article and Find Full Text PDFCurr Opin Struct Biol
December 2020
Chromatin remodeling enzymes are large molecular machines that guard the genome by reorganizing chromatin structure. They can reposition, space and evict nucleosomes and thus control gene expression, DNA replication and repair. Recent cryo-electron microscopy (cryo-EM) analyses have captured snapshots of various chromatin remodelers as they interact with nucleosomes.
View Article and Find Full Text PDFBackground: Poly-ADP-ribose polymerases (PARPs) are key mediators of cellular stress response. They are intimately linked to cellular metabolism through the consumption of NAD. PARP1/ARTD1 in the nucleus is the major NAD consuming activity and plays a key role in maintaining genomic integrity.
View Article and Find Full Text PDFBromodomain AAA+ ATPases (TPases ssociated with diverse cellular ctivities) are emerging as oncogenic proteins and compelling targets for anticancer therapies. However, structural and biochemical insight into these machines is missing. A recent study by Cho .
View Article and Find Full Text PDFThe histone chaperone FACT and histone H2B ubiquitination (H2Bub) facilitate RNA polymerase II (Pol II) passage through chromatin, yet it is not clear how they cooperate mechanistically. We used genomics, genetic, biochemical, and microscopic approaches to dissect their interplay in Schizosaccharomyces pombe. We show that FACT and H2Bub globally repress antisense transcripts near the 5' end of genes and inside gene bodies, respectively.
View Article and Find Full Text PDFMacroH2A histone variants suppress tumor progression and act as epigenetic barriers to induced pluripotency. How they impart their influence on chromatin plasticity is not well understood. Here, we analyze how the different domains of macroH2A proteins contribute to chromatin structure and dynamics.
View Article and Find Full Text PDFDNA damage triggers chromatin remodeling by mechanisms that are poorly understood. The oncogene and chromatin remodeler ALC1/CHD1L massively decompacts chromatin in vivo yet is inactive prior to DNA-damage-mediated PARP1 induction. We show that the interaction of the ALC1 macrodomain with the ATPase module mediates auto-inhibition.
View Article and Find Full Text PDFHistone variants are structural components of eukaryotic chromatin that can replace replication-coupled histones in the nucleosome. The histone variant macroH2A1.1 contains a macrodomain capable of binding NAD-derived metabolites.
View Article and Find Full Text PDFHistone chaperones are proteins that interact with histones to regulate the thermodynamic process of nucleosome assembly. sNASP and ASF1 are conserved histone chaperones that interact with histones H3 and H4 and are found in a multi-chaperoning complex in vivo Previously we identified a short peptide motif within H3 that binds to the TPR domain of sNASP with nanomolar affinity. Interestingly, this peptide motif is sequestered within the known ASF1-H3-H4 interface, raising the question of how these two proteins are found in complex together with histones when they share the same binding site.
View Article and Find Full Text PDF