A new viscoelastic wave inversion method for MRE, called Heterogeneous Multifrequency Direct Inversion (HMDI), was developed which accommodates heterogeneous elasticity within a direct inversion (DI) by incorporating first-order gradients and combining results from a narrow band of multiple frequencies. The method is compared with a Helmholtz-type DI, Multifrequency Dual Elasto-Visco inversion (MDEV), both on ground-truth Finite Element Method simulations at varied noise levels and a prospective in vivo brain cohort of 48 subjects ages 18-65. In simulated data, MDEV recovered background material within 5% and HMDI within 1% of prescribed up to SNR of 20 dB.
View Article and Find Full Text PDFDementia due to Alzheimer's Disease (AD) is a neurodegenerative disease for which treatment strategies at an early stage are of great clinical importance. So far, there is still a lack of non-invasive diagnostic tools to sensitively detect AD in early stages and to predict individual disease progression. Magnetic resonance elastography (MRE) of the brain may be a promising novel tool.
View Article and Find Full Text PDFObjectives: To apply three-dimensional multifrequency MR-elastography (3DMRE) for the measurement of local cerebral viscoelasticity changes in patients with Parkinson's disease (PD) and progressive supranuclear palsy (PSP).
Methods: T1-weighted anatomical imaging and 3DMRE were performed in 17 PD and 20 PSP patients as well as 12 controls. Two independent viscoelasticity parameters, |G*| and φ, were reconstructed combining seven harmonic vibration frequencies (30-60 Hz).
Viscoelastic properties of the brain reflect tissue architecture at multiple length scales. However, little is known about the relation between vital tissue functions, such as perfusion, and the macroscopic mechanical properties of cerebral tissue. In this study, arterial spin labelling is paired with magnetic resonance elastography to investigate the relationship between tissue stiffness and cerebral blood flow (CBF) in the in vivo human brain.
View Article and Find Full Text PDFPurpose: To improve the resolution of elasticity maps by adapting motion and distortion correction methods for phase-based magnetic resonance imaging (MRI) contrasts such as magnetic resonance elastography (MRE), a technique for measuring mechanical tissue properties in vivo.
Materials And Methods: MRE data of the brain were acquired with echo-planar imaging (EPI) at 3T (n = 14) and 7T (n = 18). Motion and distortion correction parameters were estimated using the magnitude images.
Objectives: Application of multifrequency magnetic resonance elastography (MMRE) of the brain parenchyma in patients with neuromyelitis optica spectrum disorder (NMOSD) compared to age matched healthy controls (HC).
Methods: 15 NMOSD patients and 17 age- and gender-matched HC were examined using MMRE. Two three-dimensional viscoelastic parameter maps, the magnitude |G*| and phase angle φ of the complex shear modulus were reconstructed by simultaneous inversion of full wave-field data in 1.
Purpose: To assess if higher-resolution magnetic resonance elastography (MRE) is a technique that can measure the in vivo mechanical properties of brain tissue and is sensitive to early signatures of brain tissue degradation in patients with clinically isolated syndrome (CIS).
Materials And Methods: Seventeen patients with CIS and 33 controls were investigated by MRE with a 3T MRI scanner. Full-wave field data were acquired at seven drive frequencies from 30 to 60 Hz.
The aim of this study was to introduce remote wave excitation for high-resolution cerebral multifrequency MR elastography (mMRE). mMRE of 25-45-Hz drive frequencies by head rocker stimulation was compared with mMRE by remote wave excitation based on a thorax mat in 12 healthy volunteers. Maps of the magnitude |G*| and phase φ of the complex shear modulus were reconstructed using multifrequency dual elasto-visco (MDEV) inversion.
View Article and Find Full Text PDFPurpose: To test in vivo magnetic resonance elastography (MRE) of the human intervertebral disk (IVD).
Methods: The feasibility of MRE in IVD was demonstrated in ex vivo bovine disks. Sixteen asymptomatic volunteers underwent multifrequency MRE of the lumbar spine (IVD L3/4 and L4/5, n = 32) using a posterior plate transducer connected to a loudspeaker and operated at five frequencies from 50 to 70 Hz.
Compressibility of biological tissues such as brain parenchyma is related to its poroelastic nature characterized by the geometry and pressure of vasculature and interconnected fluid-filled spaces. Thus, cerebral volumetric strain may be sensitive to intracranial pressure which can be altered under physiological conditions. So far volumetric strain has attained little attention in studies of the mechanical behavior of the brain.
View Article and Find Full Text PDFDetection and discrimination of neurodegenerative Parkinson syndromes are challenging clinical tasks and the use of standard T1- and T2-weighted cerebral magnetic resonance (MR) imaging is limited to exclude symptomatic Parkinsonism. We used a quantitative structural MR-based technique, MR-elastography (MRE), to assess viscoelastic properties of the brain, providing insights into altered tissue architecture in neurodegenerative diseases on a macroscopic level. We measured single-slice multifrequency MRE (MMRE) and three-dimensional MRE (3DMRE) in two neurodegenerative disorders with overlapping clinical presentation but different neuropathology - progressive supranuclear palsy (PSP: N = 16) and idiopathic Parkinson's disease (PD: N = 18) as well as in controls (N = 18).
View Article and Find Full Text PDFCerebral viscoelastic constants can be measured in a noninvasive, image-based way by magnetic resonance elastography (MRE) for the detection of neurological disorders. However, MRE brain maps of viscoelastic constants are still limited by low spatial resolution. Here we introduce three-dimensional multifrequency MRE of the brain combined with a novel reconstruction algorithm based on a model-free multifrequency inversion for calculating spatially resolved viscoelastic parameter maps of the human brain corresponding to the dynamic range of shear oscillations between 30 and 60 Hz.
View Article and Find Full Text PDF