Publications by authors named "Andreas Erbe"

Plastic pollution is an increasing problem in the marine environment, and microplastics are frequently ingested by wildlife, including seabirds. Faeces are an increasingly used matrix to quantify egested microplastics. We investigated microplastics in 36 faeces samples from chicks of European shags (Gulosus aristotelis) sampled at Sklinna, central Norway in 2021.

View Article and Find Full Text PDF

Inspired by photosystem II (PS II), Mn oxide based electrocatalysts have been repeatedly investigated as catalysts for the electrochemical oxygen evolution reaction (OER), the anodic reaction in water electrolysis. However, a comparison of the conditions in biological OER catalysed by the water splitting complex CaMnO with the requirements for an electrocatalyst for industrially relevant applications reveals fundamental differences. Thus, a systematic development of artificial Mn-based OER catalysts requires both a fundamental understanding of the catalytic mechanisms as well as an evaluation of the practicality of the system for industrial scale applications.

View Article and Find Full Text PDF

Environmentally friendly and sustainable methods to protect hot-dip galvanized (HDG) steel from corrosion are extensively studied. Films of the biopolymer polyelectrolyte chitosan were ionically cross-linked in this work with the well-known corrosion inhibitors phosphate and molybdate. Layers on this basis are presented as components in a protective system and could, e.

View Article and Find Full Text PDF

Filiform corrosion (FFC) is characteristic of metals such as aluminium and magnesium, usually takes place on coated metals, and spreads from coating defects in the form of filaments with a width on the order of 100 μm. In this work, and Raman spectroscopy and optical microscopy were used to characterize the composition and distribution of corrosion products inside growing filaments. The filament head contains water (OH stretching modes, 3000-3600 cm), and corrosion products based on aluminium oxide with both tetrahedrally (840 cm) and octahedrally (600 cm) coordinated Al, and with some hydroxyl group content (3075, 1420, 1164 cm).

View Article and Find Full Text PDF

Core-shell particles with thin noble metal shells represent an attractive material class with potential for various applications ranging from catalysis to biomedical and pharmaceutical applications to optical crystals. The synthesis of well-defined core-shell architectures remains, however, highly challenging. Here, we demonstrate that atomically-thin and homogeneous platinum shells can be grown via a colloidal synthesis method on a variety of gold nanostructures ranging from spherical nanoparticles to nanorods and nanocubes.

View Article and Find Full Text PDF

The inhibition of the electrochemical oxygen reduction reaction (ORR) by zinc corrosion products plays an important role in the corrosion protection of galvanized steel. Hence, the electrocatalytic mechanism of the ORR on electrodeposited zinc hydroxide-based model corrosion products was investigated by in situ and operando attenuated total reflection infrared (ATR-IR) spectroscopy, supplemented by density functional theory (DFT) calculations. Model corrosion products containing flake-like crystalline Zn(NO)(OH) were cathodically electrodeposited on germanium(100) electrodes from a zinc nitrate precursor electrolyte.

View Article and Find Full Text PDF

A detailed description of a flexible and portable atomic layer deposition (ALD) system is presented for conducting in situ Fourier transform infrared (FTIR) absorption spectroscopy studies during the evolution and growth of ALD films. The system is directly integrated with a commercial FTIR spectrometer (Bruker Vertex 80V) to avoid the necessity of an external optical path to the instrument, thereby mitigating complexity and optical losses. In this work, we use potassium bromide (KBr) with a 5 nm layer of sputtered Si as a substrate due to higher infrared transmittance when compared to a single-side polished Si wafer.

View Article and Find Full Text PDF

The control of reversible protein adsorption to a surface is a critical step towards biofouling prevention and finds utilisation in bioanalytical applications. In this work, adsorption of peptides is controlled by employing the electrode potential induced, reversible change of germanium (100) surface termination between a hydrophobic, hydrogen terminated and a hydrophilic, hydroxyl terminated surface. This simple but effective 'smart' interface is used to direct adsorption of two peptides models, representing the naturally highly abundant structural motifs of amphipathic helices and coiled-coils.

View Article and Find Full Text PDF

Background: Pregnancy, infancy, and childhood are sensitive windows for environmental exposures. Yet the health effects of exposure to nano- and microplastics (NMPs) remain largely uninvestigated or unknown. Although plastic chemicals are a well-established research topic, the impacts of plastic particles are unexplored, especially with regard to early life exposures.

View Article and Find Full Text PDF

Alzheimer's disease (AD) has become highly relevant in aging societies, yet the fundamental molecular basis for AD is still poorly understood. New tools to study the undergoing structural conformation changes of amyloid beta (Aβ) peptides, the pathogenic hallmark of AD, could play a crucial role in the understanding of the underlying mechanisms of misfolding and cytotoxicity of this peptide. It has been recently reported that Zn interacts with Aβ and changes its aggregation pathway away from less harmful fibrillar forms to more toxic species.

View Article and Find Full Text PDF

Intrinsically fluorescent carbon dots may form the basis for a safer and more accurate sensor technology for digital counting in bioanalytical assays. This work presents a simple and inexpensive synthesis method for producing fluorescent carbon dots embedded in hollow silica particles. Hydrothermal treatment at low temperature (160 °C) of microporous silica particles in presence of urea and citric acid results in fluorescent, microporous and hollow nanocomposites with a surface area of 12 m /g.

View Article and Find Full Text PDF

Fused silica crucibles are commonly used in the fabrication process of solar grade silicon ingots. These crucibles are manufactured from high purity natural quartz sand and as a consequence, their properties are influenced by the presence of water and hydroxyls in the raw quartz. In this work, diffuse reflectance IR, H magic angle spinning NMR, and Raman spectroscopy were used to investigate the influence of thermal treatment on water and hydroxyl groups in high purity natural quartz sand.

View Article and Find Full Text PDF

The mechanism of the hydrogen evolution reaction, although intensively studied for more than a century, remains a fundamental scientific challenge. Many important questions are still open, making it elusive to establish rational principles for electrocatalyst design. In this work, a comprehensive investigation was conducted to identify which dynamic phenomena at the electrified interface are prerequisite for the formation of molecular hydrogen.

View Article and Find Full Text PDF

Several different time-frequency transforms from signal processing were used to analyze electrochemical noise data to determine frequency components contained within the noise record and their time evolution. Bilinear time-frequency representations (TFR) based on the Wigner-Ville distribution (WVD) were compared with a special focus on the reassigned smoothed pseudo WVD (RSPWVD). Spectra obtained with WVD were compared with traditional linear time-frequency representations, such as short time Fourier transform and wavelet transform.

View Article and Find Full Text PDF

Manganese-based systems are considered as candidate electrocatalysts for the electrochemical oxygen evolution reaction (OER), because of their abundance in biochemical oxygen producing catalyst systems. In this work, the surface of metallic manganese was investigated in situ and operando in potentiodynamic cyclic voltammetry (CV) experiments and potentiostatic chronoamperometry (CA) experiments in NaOH. In both cases, the surfaces were initially reduced.

View Article and Find Full Text PDF

The effect of the solvent on the formation of thiol self-assembled monolayers (SAMs) on oxide-covered, reactive metals is more involved than in the well-studied gold-thiol system. In this work, copper covered with a native oxide was modified with 1-octadecanethiol (ODT) in either tetrahydrofuran or ethanol. Infrared spectroscopy indicated the formation of crystalline chain packing of alkyl chains from both solvents.

View Article and Find Full Text PDF

Multiple beam interferometry (MBI) evolved as a powerful tool for the simultaneous evaluation of thin film thicknesses and refractive indices in Surface Forces Apparatus (SFA) measurements. However, analysis has relied on simplifications for providing fast or simplified analysis of recorded interference spectra. Here, we describe the implementation of new optics and a generalized fitting approach to 4 × 4 transfer matrix method simulations for the SFA.

View Article and Find Full Text PDF

Metal pretreatment is typically the first step in a reliable corrosion protection system. This work explores the incorporation of complexes between the cyclic oligosaccharide β-cyclodextrin (β-CD) and the molecular organic corrosion inhibitor 2-mercaptobenzothiazole (MBT) into an oxide-based pretreatment layer on metallic zinc. The layers were produced by a precorrosion step in the presence of β-CD.

View Article and Find Full Text PDF

The charge-dependent structure of interfacial water at the n-Ge(100)-aqueous perchlorate interface was studied by controlling the electrode potential. Specifically, a joint attenuated total reflection infrared spectroscopy and electrochemical experiment was used in 0.1M NaClO at pH ≈ 1-10.

View Article and Find Full Text PDF

Reduced tin dioxide/copper phthalocyanine (SnOx/CuPc) heterojunctions recently gained much attention in hybrid electronics due to their defect structure, allowing tuning of the electronic properties at the interface towards particular needs. In this work, we focus on the creation and analysis of the interface between the oxide and organic layer. The inorganic/organic heterojunction was created by depositing CuPc on SnOx layers prepared with the rheotaxial growth and vacuum oxidation (RGVO) method.

View Article and Find Full Text PDF

Corrosion inhibitors are added in low concentrations to corrosive solutions for reducing the corrosion rate of a metallic material. Their mechanism of action is typically the blocking of free metal surface by adsorption, thus slowing down dissolution. This work uses electrochemical impedance spectroscopy to show the cyclic oligosaccharide β-cyclodextrin (β-CD) to inhibit corrosion of zinc in 0.

View Article and Find Full Text PDF

A rechargeable Mg battery where the capacity mainly originates from reversible reactions occurring at the electrode/electrolyte interface efficiently avoids the challenge of sluggish Mg intercalation encountered in conventional Mg batteries. The interfacial reactions in a cell based on microwave-exfoliated graphite oxide (MEGO) as the cathode and all phenyl complex (APC) as electrolyte are identified by quantitative kinetics analysis as a combination of diffusion-controlled reactions involving ether solvents ( esols) and capacitive processes. During magnesiation, esols in APC electrolytes can significantly affect the electrochemical reactions and charge transfer resistances at the electrode/electrolyte interface and thus govern the charge storage properties of the MEGO cathode.

View Article and Find Full Text PDF

ZnO nanorods were grown on a zinc substrate via cathodic delamination of a polymer coating, a tailored corrosion process, at room temperature. A comparison between in situ Raman spectra and post mortem cross sectional analysis by Raman spectroscopy, photoluminescence spectroscopy and scanning electron microscopy shows that in the initial stages of the synthesis, preferentially defect rich ZnO grows. At later stages, crystalline wurtzite ZnO growth dominates.

View Article and Find Full Text PDF

The electrode potential dependence of the hydration layer on an n-Ge(100) surface was studied by a combination of in situ and operando electrochemical attenuated total reflection infrared (ATR-IR) spectroscopy and real space density functional theory (DFT) calculations. Constant-potential DFT calculations were coupled to a modified generalised Poisson-Boltzmann ion distribution model and applied within an ab initio molecular dynamics (AIMD) scheme. As a result, potential-dependent vibrational spectra of surface species and surface water were obtained, both experimentally and by simulations.

View Article and Find Full Text PDF

A tin oxide/copper phthalocyanine (CuPc) layer stack was investigated with two complementary photoemission methods. Non-destructive analysis of the electronic properties at the SnO/CuPc interface was performed applying angle-dependent measurements with X-ray photoelectron spectroscopy (ADXPS) and energy-resolved photoemission yield spectroscopy (PYS). The different components (related to oxide layer and organic overlayer as well as to contamination features) observed in the spectra were assigned to a particular layer by relative depth plot analysis.

View Article and Find Full Text PDF