Toxicological effects of chemicals are mostly tested individually. However, consumers encounter exposure to complex mixtures, for example multiple pesticide residues, by consuming food such as crops, fruits or vegetables. Currently, more than 450 active substances are approved in the European Union, and there is little data on effects after combined exposure to several pesticides.
View Article and Find Full Text PDFProcessed Animal Proteins (PAPs) are considered as a sustainable protein source to improve the nutritional profile of feed for livestock and aquaculture. However, the use of these proteins is strongly regulated since the bovine spongiform encephalopathy (BSE) crisis. The reintroduction of nonruminant PAPs for use in aquaculture in 2013 has driven the need for alternative analytical methods to determine the species origin as well as the tissue source (legal or not).
View Article and Find Full Text PDFWith the reintroduction of nonruminant processed animal proteins (PAPs) for use in aquaculture in 2013, there is a suitable alternative to replace expensive fish meal in fish feed. Nevertheless, since the bovine spongiform encephalopathy (BSE) crisis, the use of PAPs in feed is strictly regulated. To date, light microscopy and polymerase chain reaction are the official methods for proving the absence of illegal PAPs in feed.
View Article and Find Full Text PDFThe ban of processed animal proteins (PAPs) in feed for farmed animals introduced in 2001 was one of the main EU measures to control the bovine spongiform encephalopathy (BSE) crisis. Currently, microscopy and polymerase chain reaction (PCR) are the official methods for the detection of illegal PAPs in feed. However, the progressive release of the feed ban, recently with the legalization of nonruminant PAPs for the use in aquaculture, requires the development of alternative methods to determine the species origin and the source (legal or not).
View Article and Find Full Text PDF