The efficient utilization of solar energy as renewable source is a central pillar of societal future energy production. So-called molecular solar thermal energy storage (MOST) systems have attracted considerable attention as storage solution and heat release on demand. Substituted norbornadiene/quadricyclane (NBD/QC) derivatives have been shown to be well suited for this task, in particular when substituted with electron donating and accepting functional groups.
View Article and Find Full Text PDFThe development of accurate and fast computational procedures for the calculation of X-ray spectroscopies is paramount to facilitate theoretical analysis of modern X-ray experiments on molecules. Herein, we present the extension of Cluster Perturbation theory to comprehend the calculation of core excited states and core ionization potentials using the core-valence separation approximation, which has seen widespread success for various quantum chemistry methods. We derive the theoretical framework for introducing core-valence separation into Cluster Perturbation series for excitation energies and display the performance of the methodology in S(D) orbital excitation spaces.
View Article and Find Full Text PDFJ Chem Phys
November 2024
We describe an efficient implementation of cluster perturbation and Møller-Plesset Lagrangian energy series through the fifth order that targets the coupled cluster singles and doubles energy utilizing the resolution of the identity approximation. We illustrate the computational performance of the implementation by performing ground state energy calculations on systems with up to 1200 basis functions using a single node and by comparison to conventional coupled cluster singles and doubles calculations. We further show that our hybrid message passing interface/open multiprocessing parallel implementation that also utilizes graphical processing units can be used to obtain fifth order energies on systems with almost 1200 basis functions with a 90 min "time to solution" running on Frontier at Oak Ridge National Laboratory.
View Article and Find Full Text PDFTetramethoxy substituted alkyl-acridiniums (TMAcr) are readily available by facile nucleophilic aromatic substitution on tris(2,6-dimethoxyphenyl)carbenium, but are non-fluorescent, presumably due to intramolecular photoinduced electron transfer quenching. In this work we introduce electron withdrawing groups by electrophilic aromatic substitution reactions, leading to fluorescence turn-on. The acridiniums are moderately fluorescent (φ=20 %) with long fluorescene lifetimes (τ=9 ns).
View Article and Find Full Text PDFMolecular photoswitches of norbornadiene (NBD) derivatives have been effectively applied in molecular solar-thermal energy storage (MOST) by photoisomerization of NBD to a quadricyclane (QC) state. However, a challenge of the NBD-based MOST system is the lack of a reversible two-way photoswitching process, limiting conversion from QC to thermal and catalytic methods. Here we design a series of NBD derivatives with a combination of acceptor and donor units to achieve two-way photoswitching, which can optically release energy by back-conversion from QC to NBD.
View Article and Find Full Text PDFConventional quantum-mechanical calculations of molecular properties, such as dipole moments and electronic excitation energies, give errors that depend linearly on the error in the wave function. An exception is the electronic energy, whose error depends quadratically on the error in wave function. We here describe how all properties may be calculated with a quadratic error, by setting up a variational Lagrangian for the property of interest.
View Article and Find Full Text PDFMolecules that can undergo reversible chemical transformations following the absorption of light, the so-called molecular photoswitches, have attracted increasing attention in technologies, such as solar energy storage. Here, the optical and thermochemical properties of the photoswitch are central to its applicability, and these properties are influenced significantly by solvation. We investigate the effects of solvation on two norbornadiene/quadricyclane photoswitches.
View Article and Find Full Text PDFIn this paper, we develop and analyze a number of perturbation series that target the coupled cluster singles and doubles (CCSD) ground state energy. We show how classical Møller-Plesset perturbation theory series can be restructured to target the CCSD energy based on a reference CCS calculation and how the corresponding cluster perturbation series differs from the classical Møller-Plesset perturbation series. Subsequently, we reformulate these series using the coupled cluster Lagrangian framework to obtain series, where fourth and fifth order energies are determined only using parameters through second order.
View Article and Find Full Text PDFEven though cluster perturbation theory has been shown to be a robust noniterative alternative to coupled cluster theory, it is still plagued by high order polynomial computational scaling and the storage of higher order tensors. We present a proof-of-concept strategy for implementing a cluster perturbation theory ground-state energy series for the coupled cluster singles and doubles energy with computational scaling using tensor hypercontraction (THC). The reduction in computational scaling by two orders is achieved by decomposing two electron repulsion integrals, doubles amplitudes and multipliers, as well as selected double intermediates to the THC format.
View Article and Find Full Text PDFIn this paper, we investigate the effects of solvation on the solar energy storage properties of bicyclooctadiene/tetracyclooctane (BOD/TCO) photoswitches. The solvent effects on the thermochemical and optical properties are studied in cyclohexane, toluene, dichloromethane, ethanol, acetonitrile, and a vacuum using density functional theory and coupled cluster theory. Our results show that the energy storage capacity of the BOD/TCO system increases as the solvent polarity increases, and the change is more significant with an unsubstituted system.
View Article and Find Full Text PDFWe have investigated dynamic solvent effects on molecular solar-thermal energy storage systems using models describing the effects of frequency dependent viscosities and dielectric constants on chemical reaction rates. We have utilized the generalized Langevin model for understanding how the reactions are affected by the frequency dependent viscosities and dielectric constants. Our results show that the rate constants of the molecular solar-thermal energy storage systems depend strongly on the dielectric electric solvent properties and the frequency dependent viscosities of the solvents.
View Article and Find Full Text PDFSolar energy conversion and storage are vital for combating climate change. Molecular solar thermal systems offer a promising solution, where energy is stored in molecular compounds. This study investigates dyad molecular photoswitches by combining bicyclooctadiene/tetracyclooctane and dihydroazulene/vinylheptafulvene systems with phenyl and cyano groups.
View Article and Find Full Text PDFPhotoswitches are molecular systems that are chemically transformed subsequent to interaction with light and they find potential application in many new technologies. The design and discovery of photoswitch candidates require intricate molecular engineering of a range of properties to optimize a candidate to a specific applications, a task which can be tackled efficiently using quantum chemical screening procedures. In this paper, we perform a large scale screening of approximately half a million bicyclic diene photoswitches in the context of molecular solar thermal energy storage using ab initio quantum chemical methods.
View Article and Find Full Text PDFWe describe a concise synthetic strategy for the preparation of heterocyclic [9]helicenes and a simple preparative-scale protocol for the optical resolution of the resulting M- and P-enantiomers. The helicenes were characterized by single-crystal X-ray diffraction along with a range of spectroscopic and computational techniques. A fluorescence quantum yield of up to 65 % was observed, and the chiroptical properties of both M- and P-helicenes revealed large dissymmetry factors.
View Article and Find Full Text PDFThis study examines the computational challenges in elucidating intricate chemical systems, particularly through methodologies. This work highlights the Divide-Expand-Consolidate (DEC) approach for coupled cluster (CC) theory-a linear-scaling, massively parallel framework-as a viable solution. Detailed scrutiny of the DEC framework reveals its extensive applicability for large chemical systems, yet it also acknowledges inherent limitations.
View Article and Find Full Text PDFThis presentation considers the effects that DNA-templating has on the optical properties of a 16-atom silver cluster. To accomplish this, hybrid quantum mechanical and molecular mechanical simulations of a Ag-DNA complex have been carried out and compared with pure time-dependent density functional theory calculations of two Ag clusters in vacuum. The presented results show that the templating DNA polymers both red-shift the one-photon absorption of the silver cluster and increase its intensity.
View Article and Find Full Text PDFWe present here a massively parallel implementation of the recently developed CPS(D-3) excitation energy model that is based on cluster perturbation theory. The new algorithm extends the one developed in Baudin et al. [J.
View Article and Find Full Text PDFIn this article, a modification of the second-order polarization propagator approximation (SOPPA) method is introduced and illustrated for the calculation of the indirect nuclear spin-spin couplings. The standard SOPPA method, although cheaper in terms of computational cost, offers less accurate results than the ones obtained with coupled cluster methods. A new method, named SOPPA+A3-3, was therefore developed by adding the terms of the third-order A matrix that rely on the second-order double amplitudes.
View Article and Find Full Text PDFWe present a procedure for performing high throughput screening of molecular compounds for molecular solar thermal energy storage devices using extended tight binding (xTB) methods. In order to validate our approach, we performed screening of 3230 norbornadiene/quadricyclane (NBD/QC) derivatives in terms of storage energies, activation barriers and absorption of solar radiation using our approach, and compared it to high level density functional theory (DFT) and cluster perturbation (CP) theory calculations. Our comparisons show that the xTB screening framework correlates very well with DFT and CP theory in that it predicts the same relative trends in the studied parameters although the storage energies and thermal reaction barriers are significantly offset.
View Article and Find Full Text PDFHerein, we present an investigation of the excited state dynamics of the dihydroazulene photoswitch and its photoinduced reaction to vinylheptafulvene. The focus is on how the introduction of a benzannulated ring in different sites of the structure can modify the excited state topology and thus the kinetics of the ring opening reaction of DHA by alteration of the excited state conjugation of the system. The dynamics of the systems is obtained utilizing density functional theory calculations in different solvents coupled with unimolecular reaction theory.
View Article and Find Full Text PDFHelicenes are of general interest due to the significant chiral signals in both absorption- and emission-based spectroscopy. Herein, the spectroscopic properties of four recently synthesized azaoxahelicenes are studied using density functional theory methods. The azaoxahelicenes have 7, 9, 10, and 13 units and one to two complete turns of the structure.
View Article and Find Full Text PDFWe have extended cluster perturbation (CP) theory to comprehend the Lagrangian framework of coupled cluster (CC) theory and derived the CP Lagrangian energy series (L) where the 2n + 1/2n + 2 rules for the cluster amplitudes and multipliers are used to get the energy corrections. We have also developed the variational CP (L) series, where the total cluster amplitudes and multipliers are determined through the same orders as in the L series, but the energy is obtained by inserting the total cluster amplitudes and multipliers in the Lagrangian. The energies of the L series have errors that are bilinear in the errors of the total cluster amplitudes and multipliers.
View Article and Find Full Text PDFThe convergence of the recently developed cluster perturbation (CP) expansions [Pawlowski et al., J. Chem.
View Article and Find Full Text PDFWe have extended cluster perturbation (CP) theory to comprehend the calculation of first order properties (FOPs). We have determined CP FOP series where FOPs are determined as a first energy derivative and also where the FOPs are determined as a generalized expectation value of the external perturbation operator over the coupled cluster state and its biorthonormal multiplier state. For S(D) orbital excitation spaces, we find that the CP series for FOPs that are determined as a first derivative, in general, in second order have errors of a few percent in the singles and doubles correlation contribution relative to the targeted coupled cluster (CC) results.
View Article and Find Full Text PDF