Publications by authors named "Andreas Digre"

Studying the spatial distribution of proteins provides the basis for understanding the biology, molecular repertoire, and architecture of every human cell. The Human Protein Atlas (HPA) has grown into one of the world's largest biological databases, and in the most recent version, a major update of the structure of the database was performed. The data has now been organized into 10 different comprehensive sections, each summarizing different aspects of the human proteome and the protein-coding genes.

View Article and Find Full Text PDF

Advances in molecular profiling have opened up the possibility to map the expression of genes in cells, tissues, and organs in the human body. Here, we combined single-cell transcriptomics analysis with spatial antibody-based protein profiling to create a high-resolution single-cell type map of human tissues. An open access atlas has been launched to allow researchers to explore the expression of human protein-coding genes in 192 individual cell type clusters.

View Article and Find Full Text PDF

For a complete understanding of a system's processes and each protein's role in health and disease, it is essential to study protein expression with a spatial resolution, as the exact location of proteins at tissue, cellular, or subcellular levels is tightly linked to protein function. The Human Protein Atlas (HPA) project is a large-scale initiative aiming at mapping the entire human proteome using antibody-based proteomics and integration of various other omics technologies. The publicly available knowledge resource www.

View Article and Find Full Text PDF

Heparanase, the sole heparan sulfate degrading endoglycosidase, regulates multiple biological activities that enhance tumor growth, angiogenesis and metastasis. Much of the impact of heparanase on tumor progression is related to its function in mediating tumor-host crosstalk, priming the tumor microenvironment to better support tumor growth and metastasis. We have utilized mice over-expressing (Hpa-tg) heparanase to reveal the role of host heparanase in tumor initiation, growth and metastasis.

View Article and Find Full Text PDF

Amyloid-β (Aβ) is the main constituent of amyloid deposits in Alzheimer's disease (AD). The neuropathology is associated with neuroinflammation. Here, we investigated effects of systemic lipopolysaccharide (LPS)-treatment on neuroinflammation and Aβ deposition in AβPP-mice and double-transgenic mice with brain expression of AβPP and heparanase, an enzyme that degrades HS and generates an attenuated LPS-response.

View Article and Find Full Text PDF

Heparanase is an endo-glucuronidase that degrades heparan sulfate chains. The enzyme is expressed at a low level in normal organs; however, elevated expression of heparanase has been detected in several inflammatory conditions, e.g.

View Article and Find Full Text PDF

Apolipoprotein A1 (apoA1) is the main protein component responsible for transportation of cholesterol on high-density lipoprotein (HDL). Serum amyloid A (SAA) is an acute phase protein associated with HDL. Apart from their physiological functions, both apoA1 and SAA have been identified as 'amyloidogenic peptides'.

View Article and Find Full Text PDF

AA-amyloidosis is a disease characterized by abnormal deposition of serum A amyloid (SAA) peptide along with other components in various organs. The disease is a complication of inflammatory conditions that cause persistent high levels of the acute phase reactant SAA in plasma. In experimental animal models, the deposited amyloid is resolved when the inflammation is stopped, suggesting that there is an efficient clearance mechanism for the amyloid.

View Article and Find Full Text PDF