In animals, stem cell populations of varying potency facilitate regeneration and tissue homeostasis. Notably, germline stem cells in both vertebrates and invertebrates express highly conserved RNA binding proteins, such as , , and . In highly regenerative animals, these genes are also expressed in somatic stem cells, which led to the proposal that they had an ancestral role in all stem cells.
View Article and Find Full Text PDFBackground: The recent combination of genomics and single cell transcriptomics has allowed to assess a variety of non-conventional model organisms in much more depth. Single cell transcriptomes can uncover hidden cellular complexity and cell lineage relationships within organisms. The recent developmental cell atlases of the sea anemone Nematostella vectensis, a representative of the basally branching Cnidaria, has provided new insights into the development of all cell types (Steger et al Cell Rep 40(12):111370, 2022; Sebé-Pedrós et al.
View Article and Find Full Text PDFAnimals are typically composed of hundreds of different cell types, yet mechanisms underlying the emergence of new cell types remain unclear. Here we address the origin and diversification of muscle cells in the non-bilaterian, diploblastic sea anemone Nematostella vectensis. We discern two fast and two slow-contracting muscle cell populations, which differ by extensive sets of paralogous structural protein genes.
View Article and Find Full Text PDFCommunication in bilaterian nervous systems is mediated by electrical and secreted signals; however, the evolutionary origin and relation of neurons to other secretory cell types has not been elucidated. Here, we use developmental single-cell RNA sequencing in the cnidarian Nematostella vectensis, representing an early evolutionary lineage with a simple nervous system. Validated by transgenics, we demonstrate that neurons, stinging cells, and gland cells arise from a common multipotent progenitor population.
View Article and Find Full Text PDFHoneybee colonies offer an excellent environment for microbial pathogen development. The highest virulent, colony killing, bacterial agents are Paenibacillus larvae causing American foulbrood (AFB), and European foulbrood (EFB) associated bacteria. Besides the innate immune defense, honeybees evolved behavioral defenses to combat infections.
View Article and Find Full Text PDFTendon ruptures and defects remain major orthopaedic challenges. Tendon healing is a time-consuming process, which results in scar tissue with an altered biomechanical competence. Using a xenogeneic tendon extracellular matrix (ECM) as a natural scaffold, which can be reseeded with autologous human tenocytes, might be a promising approach to reconstruct damaged tendons.
View Article and Find Full Text PDF