Cells rapidly lose their physiological phenotype upon disruption of their extracellular matrix (ECM)-intracellular cytoskeleton interactions. By comparing adult mouse skeletal muscle fibers, isolated either by mechanical dissection or by collagenase-induced ECM digestion, we investigated acute effects of ECM disruption on cellular and mitochondrial morphology, transcriptomic signatures, and Ca handling. RNA-sequencing showed striking differences in gene expression patterns between the two isolation methods with enzymatically dissociated fibers resembling myopathic phenotypes.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a degenerative genetic myopathy characterized by complete absence of dystrophin. Although the mouse lacks dystrophin, its phenotype is milder compared to DMD patients. The incorporation of a null mutation in the gene led to a more DMD-like phenotype (i.
View Article and Find Full Text PDFIn yeast, Tom22, the central component of the TOMM (translocase of outer mitochondrial membrane) receptor complex, is responsible for the recognition and translocation of synthesized mitochondrial precursor proteins, and its protein kinase CK2-dependent phosphorylation is mandatory for TOMM complex biogenesis and proper mitochondrial protein import. In mammals, the biological function of protein kinase CSNK2/CK2 remains vastly elusive and it is unknown whether CSNK2-dependent phosphorylation of TOMM protein subunits has a similar role as that in yeast. To address this issue, we used a skeletal muscle-specific Csnk2b/Ck2β-conditional knockout (cKO) mouse model.
View Article and Find Full Text PDFThe majority of hereditary and acquired myopathies are clinically characterized by progressive muscle weakness. We hypothesized that ongoing derangement of skeletal muscle cytoarchitecture at the single fiber level may precede and be responsible for the progressive muscle weakness. Here, we analyzed the effects of aging in wild-type (wt) and heterozygous (het) and homozygous (hom) R349P desmin knock-in mice.
View Article and Find Full Text PDFMethods Mol Biol
February 2018
Microscopy in combination with contrast-increasing dyes allows the visualization and analysis of organs, tissues, and various cells. Because of their better resolution, the development of confocal and laser microscopes enables the investigations of cell components, which are labeled with fluorescent dyes. The imaging of living cells on subcellular level (also in vivo) needs a labeling by gene transfection of GFP or similar labeled proteins.
View Article and Find Full Text PDFIn striated muscle, desmin intermediate filaments interlink the contractile myofibrillar apparatus with mitochondria, nuclei, and the sarcolemma. The desmin network's pivotal role in myocytes is evident since mutations in the human desmin gene cause severe myopathies and cardiomyopathies. Here, we investigated skeletal muscle pathology in myofibers and myofibrils isolated from young hetero- and homozygous R349P desmin knock-in mice, which carry the orthologue of the most frequent human desmin missense mutation R350P.
View Article and Find Full Text PDFFront Mol Neurosci
October 2016
Microglia activation is a neuroinflammatory response to parenchymal damage with release of intracellular metabolites, e.g., purines, and signaling molecules from damaged cells.
View Article and Find Full Text PDFDuchenne muscular dystrophy is an inherited degenerative muscle disease with progressive weakness of skeletal and cardiac muscle. Disturbed calcium homeostasis and signalling pathways result in degeneration/regeneration cycles with fibrotic remodelling of muscle tissue, sustained by chronic inflammation. In addition to altered microarchitecture, regeneration in dystrophic muscle fibres is often only classified by centrally located nuclei but correlation of the regeneration process to nuclear volumes, myosin amounts, architecture and functional quality are missing, in particular in old muscles where the regenerative capacity is exhausted.
View Article and Find Full Text PDFCritical illness myopathies in patients with sepsis or sustained mechanical ventilation prolong intensive care treatment and threaten both patients and health budgets; no specific therapy is available. Underlying pathophysiological mechanisms are still patchy. We characterized IL-1α action on muscle performance in "skinned" muscle fibers using force transducers and confocal Ca(2+) fluorescence microscopy for force/Ca(2+) transients and Ca(2+) sparks.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a common inherited muscle disease showing chronic inflammation and progressive muscle weakness. Absent dystrophin renders sarcolemma more Ca(2+) -permeable, disturbs signalling and triggers inflammation. Sustained degeneration/regeneration cycles render muscle cytoarchitecture susceptible to remodelling.
View Article and Find Full Text PDFPractically, all chronic diseases are characterized by tissue remodeling that alters organ and cellular function through changes to normal organ architecture. Some morphometric alterations become irreversible and account for disease progression even on cellular levels. Early diagnostics to categorize tissue alterations, as well as monitoring progression or remission of disturbed cytoarchitecture upon treatment in the same individual, are a new emerging field.
View Article and Find Full Text PDF