The multidomain protein BAG3 exerts pleiotropic oncogenic functions in many tumor entities including glioblastoma (GBM). Here, we compared BAG3 protein-protein interactions in either adherently cultured or stem-like cultured U251 GBM cells. In line with BAG3's putative role in regulating stem-like properties, identified interactors in sphere-cultured cells included different stem cell markers (SOX2, OLIG2, and NES), while interactomes of adherent BAG3-proficient cells indicated a shift toward involvement of BAG3 in regulation of cilium assembly (ACTR3 and ARL3).
View Article and Find Full Text PDFIn DNA-encoded library synthesis, amine-substituted building blocks are prevalent. We explored isocyanide multicomponent reactions to diversify DNA-tagged amines and reported the Ugi-azide reaction with high yields and a good substrate scope. In addition, the Ugi-aza-Wittig reaction and the Ugi-4-center-3-component reaction, which used bifunctional carboxylic acids to provide lactams, were explored.
View Article and Find Full Text PDFThe transfer from batch to flow chemistry is often based on commercial microfluidic equipment, such as costly complete reactor systems, which cannot be easily tailored to specific requirements of technologies such as DNA-encoded library technology (DELT), in particular for increasingly important photochemical reactions. Customized photoreactor concepts using rapid prototyping technology offer a modular, flexible, and affordable design that allows for adaptation to various applications. In order to validate the prototype reactors, a photochemical pinacol coupling reaction at 368 nm was conducted to demonstrate the transfer from batch to flow chemistry.
View Article and Find Full Text PDFDatabases contain millions of reactions for compound synthesis, rendering selection of reactions for forward synthetic design of small molecule screening libraries, such as DNA-encoded libraries (DELs), a big data challenge. To support reaction space navigation, we developed the computational workflow Reaction Navigator. Reaction files from a large chemistry database were processed using the open-source KNIME Analytics Platform.
View Article and Find Full Text PDFLibraries of DNA-encoded compounds (DELs) are a validated screening technology for drug discovery. Here we describe a library synthesis strategy that starts with a solid phase-bound, chemically very stable hexathymidine DNA sequence "hexT." Different heterocycle conjugates of the hexT oligonucleotide were synthesized from simple starting materials using metal or acid catalysts.
View Article and Find Full Text PDFDNA-encoded library technologies require high-throughput, compatible, and well automatable platforms for chemistry development, building block rehearsal, and library synthesis. An affinity-based process using Watson-Crick interactions was developed that enables purification of DNA-tagged compounds from complex reaction mixtures. The purification relies on a single-stranded DNA-oligonucleotide, called , which was covalently coupled to an agarose matrix and to which a DNA-compound conjugate from a DNA-encoded library (DEL) reaction can be reversibly annealed to.
View Article and Find Full Text PDFDNA-encoded libraries are a prime technology for target-based small molecule screening. Native DNA used as genetic compound barcode is chemically vulnerable under many reaction conditions. DNA barcodes that are composed of pyrimidine nucleobases, 7-deazaadenine, and 7-deaza-8-azaguanine have been investigated for their suitability for encoded chemistry both experimentally and computationally.
View Article and Find Full Text PDFReactions that require strictly dry conditions are challenging to translate to a DNA-encoded library format. Controlled pore glass solid support-connected DNA oligonucleotide-aldehyde conjugates could be condensed with SnAP reagents and cyclized to various sp-rich heterocycles. The Boc-group of products provided a handle for product purification, and its facile removal under acidic conditions was tolerated by a chemically stabilized barcode.
View Article and Find Full Text PDFDNA-encoded libraries (DELs) offer great promise for the discovery of new ligands for proteins. Many current reactions used for DEL synthesis do not proceed efficiently over a wide range of substrates. Combining a diverse array of multicomponent reactions with micellar-promoted Suzuki-Miyaura cross-coupling provides a strategy for synthesizing highly diverse DELs with exceptionally high fidelity.
View Article and Find Full Text PDFDNA-encoded libraries designed around heterocyclic scaffolds have proven highly productive in target-based screening. Here, we show the synthesis of imidazopyridines on a controlled pore glass-coupled DNA oligonucleotide for solid phase-initiated encoded library synthesis. The target compounds were synthesized by a variant of the A3 coupling reaction from aminopyridines, alkynes, and aldehydes promoted by copper(I/II) and furnished diverse substituted scaffolds with functionalities for library design.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2021
DNA-encoded compound libraries are a widely used small molecule screening technology. One important aim in library design is the coverage of chemical space through structurally diverse molecules. Yet, the chemical reactivity of native DNA barcodes limits the toolbox of reactions for library design.
View Article and Find Full Text PDFThe development of DNA-compatible reaction methodologies is a central theme to advance DNA-encoded screening library technology. Recently, we were able to show that sulfonic acid-functionalized block copolymer micelles facilitated Brønsted acid-promoted reactions such as the Povarov reaction on DNA-coupled starting materials with minimal DNA degradation. Here, the impact of polymer composition on micelle shape, and reaction conversion was investigated.
View Article and Find Full Text PDFUnderstanding the ligandability of a target protein, defined as the capability of a protein to bind drug-like compounds on any site, can give important stimuli to drug-development projects. For instance, inhibition of protein-protein interactions usually depends on the identification of protein surface binders. DNA-encoded chemical libraries (DELs) allow scanning of protein surfaces with large chemical space.
View Article and Find Full Text PDFDNA-encoded combinatorial synthesis provides efficient and dense coverage of chemical space around privileged molecular structures. The indole side chain of tryptophan plays a prominent role in key, or "hot spot", regions of protein-protein interactions. A DNA-encoded combinatorial peptoid library was designed based on the Ugi four-component reaction by employing tryptophan-mimetic indole side chains to probe the surface of target proteins.
View Article and Find Full Text PDFThe Petasis three-component reaction gives rise to diverse substituted α-aryl glycines from readily available amines, boronic acids and glyoxalic acid. Thus, this reaction is highly attractive for DNA-encoded small molecule screening library synthesis. The Petasis reaction is for instance promoted by a potentially DNA damaging copper(I)/bipyridine reagent system in dry organic solvents.
View Article and Find Full Text PDFBAG3, a multifunctional HSP70 co-chaperone and anti-apoptotic protein that interacts with the ATPase domain of HSP70 through its C-terminal BAG domain plays a key physiological role in cellular proteostasis. The HSP70/BAG3 complex determines the levels of a large number of selective client proteins by regulating their turnover via the two major protein degradation pathways, i.e.
View Article and Find Full Text PDFDNA-encoded compound libraries are a widely used technology for target-based small molecule screening. Generally, these libraries are synthesized by solution phase combinatorial chemistry requiring aqueous solvent mixtures and reactions that are orthogonal to DNA reactivity. Initiating library synthesis with readily available controlled pore glass-coupled DNA barcodes benefits from enhanced DNA stability due to nucleobase protection and choice of dry organic solvents for encoded compound synthesis.
View Article and Find Full Text PDFLaboratory automation strategies have vast potential for accelerating discovery processes. They enable higher efficiency and throughput for time-consuming screening procedures and reduce error-prone manual steps. Automating repetitive procedures can for instance support chemists in optimizing chemical reactions.
View Article and Find Full Text PDFIsocyanide multicomponent reactions play a prominent role in drug discovery. This chemistry has hardly been investigated for compatibility with DNA-encoded combinatorial synthesis. The Ugi, Ugi-azide, and Groebke-Blackburn-Bienaymé reactions are well-tolerated by DNA on the solid phase and show a broad scope.
View Article and Find Full Text PDFDNA-encoded libraries of chemically synthesized compounds are an important small molecule screening technology. The synthesis of encoded compounds in solution is currently restricted to a few DNA-compatible and water-tolerant reactions. Encoded compound synthesis of short DNA-barcodes covalently connected to solid supports benefits from a broad range of choices of organic solvents.
View Article and Find Full Text PDFTetrahydropyrazino-annelated theophylline (1,3-dimethylxanthine) derivatives have previously been shown to display increased water-solubility as compared to the parent xanthines due to their basic character. In the present study, we modified this promising scaffold by replacing the 1,3-dimethyl residues by a variety of alkyl groups including combinations of different substituents in both positions. Substituted benzyl or phenethyl residues were attached to the N8 of the resulting 1,3-dialkyl-tetrahydropyrazino[2,1- ]purinediones with the aim to obtain multi-target drugs that block human A and A adenosine receptors (ARs) and monoaminoxidase B (MAO-B).
View Article and Find Full Text PDFDNA-encoded compound libraries are a highly attractive technology for the discovery of small molecule protein ligands. These compound collections consist of small molecules covalently connected to individual DNA sequences carrying readable information about the compound structure. DNA-tagging allows for efficient synthesis, handling and interrogation of vast numbers of chemically synthesized, drug-like compounds.
View Article and Find Full Text PDFWe demonstrate a Au(i)-mediated three-component reaction to DNA-tagged highly substituted 6-oxa-1,2-diazaspiro[4.4]nonanes from either DNA-coupled aldehydes, hydrazides, or alkynols. The choice of the starting material coupled to the DNA tag was critial for the purity of the product as the DNA-aldehyde conjugate yielded the purest products, whereas the alkynol- and hydrazide conjugates returned complex product mixtures.
View Article and Find Full Text PDFWhen used as inhibitors of gene expression in vivo, oligonucleotides require modification of their structures to boost their binding affinity for complementary target RNAs. To date, hundreds of modifications have been designed and tested but few have proven to be useful. Among those investigated are mono- and polyamino-groups.
View Article and Find Full Text PDF