Publications by authors named "Andreas Bress"

Nonsyndromic hearing loss is an extremely heterogeneous disorder. Thus, clinical diagnostics is challenging, in particular due to differences in the etiology of hearing loss between populations. With this study, we wanted to elucidate the genetic basis of hearing loss in 61 consanguineous Egyptian families.

View Article and Find Full Text PDF

Background: Mitochondrial maternally inherited hearing impairment (HI) appears to be increasing in frequency. The incidence of mitochondrial defects causing HI is estimated to be between 6 and 33% of all hearing deficiencies. Mitochondrial m.

View Article and Find Full Text PDF

Background: Hearing impairments (HI) are the most common birth defect worldwide. Very large numbers of genes have been identified but the most profound is . The clinical interest regarding this gene is very pronounced due to its high carrier frequency (0.

View Article and Find Full Text PDF

After excluding frequent mutations in common genes like GJB2, SLC26A4 and MT-RNR1 by straightforward Sanger sequencing in about 20 Polish families with hearing impairment, new and possibly pathogenic mutations were searched for by next-generation sequencing (NGS) screening using a specialised panel including more than 80 genes connected with hearing disorders. Due to high rates of false-positive pathogen predictions for newly discovered single-nucleotide polymorphisms (SNPs), different prediction models were combined to enhance the prediction power. In one family with a record of over four generations, II,3 and II,4 were suspected of hearing impairment without medical records.

View Article and Find Full Text PDF

Hypothesis: Genetic variation in BMP2 and BMP4 found in otosclerosis patients result in altered Smad signaling.

Background: Otosclerosis is a common form of adult-onset conductive hearing loss resulting from abnormal bone remodeling of the bony labyrinth that surrounds the inner ear. Both genetic and environmental factors are implicated in the disease, yet very little is known about its pathogenesis.

View Article and Find Full Text PDF

Thyroid hormone acts on gene transcription by binding to its nuclear receptors TRα1 and TRβ. Whereas global deletion of TRβ causes deafness, global TRα-deficient mice have normal hearing thresholds. Since the individual roles of the two receptors in cochlear hair cells are still unclear, we generated mice with a hair cell-specific mutation of TRα1 or deletion of TRβ using the Cre-loxP system.

View Article and Find Full Text PDF

The motor protein, prestin, situated in the basolateral plasma membrane of cochlear outer hair cells (OHCs), underlies the generation of somatic, voltage-driven mechanical force, the basis for the exquisite sensitivity, frequency selectivity and dynamic range of mammalian hearing. The molecular and structural basis of the ontogenetic development of this electromechanical force has remained elusive. The present study demonstrates that this force is significantly reduced when the immature subcellular distribution of prestin found along the entire plasma membrane persists into maturity, as has been described in previous studies under hypothyroidism.

View Article and Find Full Text PDF

Background: Otoferlin, a postulated calcium sensor of 230 kDa, was proposed to trigger calcium dependent fusion of vesicles with plasma membrane in the ribbon synapses of cochlear IHCs. Otoferlin's interaction with Rab8b and Myo6, proteins involved in the intracellular membrane trafficking, extended the previous hypothesis assigning Otoferlin an additional role in trans-Golgi trafficking. Here, we present another Otoferlin binding partner, Ergic2, a protein with a still unknown function but presenting sequence homology to other proteins involved in ER/Golgi vesicle trafficking.

View Article and Find Full Text PDF

The vertebrate-restricted carcinoembryonic antigen gene family evolves extremely rapidly. Among their widely expressed members, the mammal-specific, secreted CEACAM16 is exceptionally well conserved and specifically expressed in the inner ear. To elucidate a potential auditory function, we inactivated murine Ceacam16 by homologous recombination.

View Article and Find Full Text PDF

Background: FKBP8 is a multifunctional protein involved in many distinct processes like formation of central nervous system, viral RNA replication and inhibition of apoptosis. Fkbp8 expression was reported in different tissues, various cell lines and malignancies, in the latter displaying changes during carcinogenesis. Loss of Fkbp8 leads to substantial neurodegenerations during regular mouse development, thus hearing onset in mice could also potentially depend on Fkbp8 expression.

View Article and Find Full Text PDF

Mutations in GJB2, a gene encoding the gap junction protein connexin 26 (Cx26), are a major cause for inherited and sporadic non-syndromic hearing loss, albeit with highly variable clinical effects. To determine new mutations and their frequencies in a Southern Egyptian population restriction fragment length polymorphism, gene sequencing, and single strand conformational polymorphism revealed only 2 mutations for GJB2: c.35delG and p.

View Article and Find Full Text PDF

Most forms of hearing loss are associated with loss of cochlear outer hair cells (OHCs). OHCs require the tectorial membrane (TM) for stereociliary bundle stimulation (forward transduction) and active feedback (reverse transduction). Alpha tectorin is a protein constituent of the TM and the C1509G mutation in alpha tectorin in humans results in autosomal dominant hearing loss.

View Article and Find Full Text PDF

Thyroid hormone receptor beta (TRbeta) dysfunction leads to deafness in humans and mice. Deafness in TRbeta(-/-) mutant mice has been attributed to TRbeta-mediated control of voltage- and Ca(2+)-activated K(+) (BK) channel expression in inner hair cells (IHCs). However, normal hearing in young constitutive BKalpha(-/-) mutants contradicts this hypothesis.

View Article and Find Full Text PDF

Mutations within OTOF encoding otoferlin lead to a recessive disorder called DFNB9. Several studies have indicated otoferlin's association with ribbon synapses of cochlear sensory hair cells, as well as data showing the protein's presence in neurons, nerve fibers and hair cells, suggesting a more ubiquitous function. Otoferlin's co-localization not only with ribbon synaptic proteins, but also with additional endosomal (EEA1) or Golgi proteins (GM130) were motivation for a search for further binding partners of otoferlin by a yeast two-hybrid screen in a rodent cochlear cDNA library (P3-P15).

View Article and Find Full Text PDF