Publications by authors named "Andreas Brenneis"

For future on-chip communication schemes, it is essential to integrate nanoscale materials with an ultrafast optoelectronic functionality into high-frequency circuits. The atomically thin graphene has been widely demonstrated to be suitable for photovoltaic and optoelectronic devices because of its broadband optical absorption and its high electron mobility. Moreover, the ultrafast relaxation of photogenerated charge carriers has been verified in graphene.

View Article and Find Full Text PDF

We investigate the optoelectronic properties of single indium arsenide nanowires, which are grown vertically on p-doped silicon substrates. We apply a scanning photocurrent microscopy to study the optoelectronic properties of the single heterojunctions. The measured photocurrent characteristics are consistent with an excess charge carrier transport through midgap trap states, which form at the Si/InAs heterojunctions.

View Article and Find Full Text PDF

Non-radiative transfer processes are often regarded as loss channels for an optical emitter because they are inherently difficult to access experimentally. Recently, it has been shown that emitters, such as fluorophores and nitrogen-vacancy centres in diamond, can exhibit a strong non-radiative energy transfer to graphene. So far, the energy of the transferred electronic excitations has been considered to be lost within the electron bath of the graphene.

View Article and Find Full Text PDF