We study the superradiant emission of an inverted spin ensemble strongly coupled to a superconducting cavity. After fast inversion, we detune the spins from the cavity and store the inversion for tens of milliseconds, during which the remaining transverse spin components disappear. Switching back on resonance enables us to study the onset of superradiance.
View Article and Find Full Text PDFWe combine top-down and bottom-up nanolithography to optimize the coupling of small molecular spin ensembles to 1.4 GHz on-chip superconducting resonators. Nanoscopic constrictions, fabricated with a focused ion beam at the central transmission line, locally concentrate the microwave magnetic field.
View Article and Find Full Text PDFNonlinear systems, whose outputs are not directly proportional to their inputs, are well known to exhibit many interesting and important phenomena that have profoundly changed our technological landscape over the last 50 years. Recently, the ability to engineer quantum metamaterials through hybridization has allowed us to explore these nonlinear effects in systems with no natural analog. We investigate amplitude bistability, which is one of the most fundamental nonlinear phenomena, in a hybrid system composed of a superconducting resonator inductively coupled to an ensemble of nitrogen-vacancy centers.
View Article and Find Full Text PDFWe experimentally demonstrate a simple yet versatile optimal quantum control technique that achieves tailored robustness against qubit inhomogeneities and control errors while requiring minimal bandwidth. We apply the technique to nitrogen-vacancy (NV) centers in diamond and verify its performance using quantum process tomography. In a wide-field NV center magnetometry scenario, we achieve a homogeneous sensitivity across a 33% drop in control amplitude, and we improve the sensitivity by up to 2 orders of magnitude for a normalized detuning as large as 40%, achieving a value of 20 nT Hz(-1/2) μm(3/2) in sensitivity times square root volume.
View Article and Find Full Text PDF