Mutation detection and mismatch repair investigations based on heteroduplex formation require a linear DNA structure. DNA branching, described previously under physiological conditions, has been analysed in the heteroduplex formation process. Symmetrical chi-structures were detected after heteroduplex formation by gel electrophoresis and electron microscopy.
View Article and Find Full Text PDFThe electrophoretic gel-based chemical cleavage of the mismatch method gives an incomplete view of the DNA conformational changes induced by a single base mismatch. This spectroscopic study investigates the permanganate oxidation reactions with matched and mismatched DNA under constant and variable temperature conditions. The results, which include the oxidation levels, reaction patterns with isosbestic points, color changes, thermal spectra, spectroscopy derivative, and gel separation and melting temperatures, provide a fundamental background for identification of oligonucleotides containing single base mismatches by chemical means.
View Article and Find Full Text PDFBACKGROUND: The conventional solution-phase Chemical Cleavage of Mismatch (CCM) method is time-consuming, as the protocol requires purification of DNA after each reaction step. This paper describes a new version of CCM to overcome this problem by immobilizing DNA on silica solid supports. RESULTS: DNA test samples were loaded on to silica beads and the DNA bound to the solid supports underwent chemical modification reactions with KMnO4 (potassium permanganate) and hydroxylamine in 3M TEAC (tetraethylammonium chloride) solution.
View Article and Find Full Text PDFThe last decade has witnessed many exciting scientific publications associated with site-selective reactions of small chemical molecules with imperfectly matched DNA. Typical examples are carbodiimide, hydroxylamine, potassium permanganate, osmium tetroxide, chemical tagging probes, biotinylated, chemiluminescent and fluorescent probes, and all of them selectively react with imperfectly matched DNA. More recently, some therapeutic agents including DNA intercalating drugs and groove binders have been found to promote the in vivo repair system to recognize and repair the mismatch more effectively.
View Article and Find Full Text PDF